LT100 API
The programmer guide

Version 3.2.1, 28/10/2024

Table of Contents

1. Introduction
2. Installation
2.1. Windows
2.2. Linux
2.3.SDK
2.4. Tools
2.5. LT Board Firmware
2.6.1t100agent Controls
3. ecurl (CLI)
3.1. GET command
3.2. POST command
3.3. DELETE Command
3.4. PLAY Command
3.5. REC Command
4. API description
4.1. Agent
4.1.1. Agent Object
4.1.2. View 1t100agent Information
4.2. Board
4.2.1. Board Object
4.2.2. View Board Information
4.3. CVBS Input
4.3.1. CVBS Input Object
4.3.2. View CVBS Input Status
4.3.3. CVBS Input from the command line
4.4. SVIDEO Input
4.4.1. SVIDEO Input Object
4.4.2. View SVIDEO Input Status

4.4.3. SVIDEO Input from the command line

4.5. DVI Input

4.5.1. DVI Input Object

4.5.2. View DVI Input Status

4.5.3. DVI Input from the command line
4.6. SDI Input

4.6.1. SDI Input Object

4.6.2. View SDI Input Status

© 00 00 0 00 3 o O U1 U1 U1 b W W W N DN DN

NN NN NN R R B R R)) s) s)
U b W N = O O© 00 3 0 U b W N = o O

4.6.3. SDI Input from the command line

4.7. Canvas

4.7.1. Canvas Object
4.7.2. View Canvas Status
4.7.3. Delete Operation
4.7.4. Init Operation
4.7.5. Text Operation
4.7.6. Line Operation
4.7.7. Ellipse Operation
4.7.8. Rectangle Operation
4.7.9. Image Operation
4.7.10. Video Operation
4.7.11. Batch Operations

4.7.12. Canvas from the command line

4.8. Client

4.8.1. Fetch Worker Updates

4.8.2. Terminate Worker

4.8.3. Terminate ALL Workers
4.8.4. Release Referenced Memory

4.9. Workers

4.9.1. Worker Creation

4.9.2. Worker Object

4.9.3. Packet Object

4.9.4. Data Worker Workflow
4.9.5. File Worker Workflow

5. Cheatsheet
6. Changelog

26
27
29
30
31
32
34
36
38
40
42
44
46
46
47
47
48
48
48
49
49
57
58
62
63
66
69

Chapter 1. Introduction

The LT API is organized around REST which stands for Representational State Transfer. This is an
architectural pattern that describes how systems can expose a consistent interface. When people use
the term REST AP], they are generally referring to an API accessed with a predefined set of URLs.

These URLs represent various resources which are returned as JSON objects. Resources have one or
more methods like GET, POST or DELETE.

The LT API requests are processed by a host service called 1t100agent. The 1t100agent uses the
standard Operating System IPC, SG-DMA and shared memory mechanisms to serve the LT API requests
with the minimum possible latency. Video and Audio data is distributed to the various consumers with
shared memory segments to increase the performance with either the large data buffers and the
concurrent access.

The LT API is structured in a way that the LT boards can be seen as hardware as a service. The
hardware specific implementations are hidden behind a unique general API that let the users to focus
only on what the boards are most useful for: grab, play, record and stream audio and video data.

Clients REST LT API LT Agent LT Driver
ecurl (CLI) < | | | | |
<-- | | | |
< | | Controls | | |
G0 < | | Status | | | <--> LT board #0
C++ <= | | Logs | |
c# <-- | | | | | <--> LT board #1
Python < | | | | PCIe |
<= | > e | <-->] Driver |
Directshow < | | | | (DMA) |
VAL2 <= | | | | |
< | | Data | | | <--> LT board #n
NamedPipe < | | Server | | |
UART <= | | | | |
TCP < | | | | |
HTTP (TBD) < | | | | |
e . |
< | | Firmwares | | |

https://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 2. Installation

2.1. Windows

Download and run the latest 1t100install_x.x.x.exe to deploy the 1t100 family drivers, tools and
services. If necessary the previous version will be uninstalled.

Once installed, the 1tl00agent service will be started automatically and will be (re)started
automatically with each system (re)boot.

The 1t100agent can be controlled using the Windows Services Manager or the 1t100agent command
line interface. Please see [control service].

The LT boards plugged into the host should appear in the Windows Device Manager under the Sound,
video and game controllers.

Directshow

All the boards inputs are accessible through directshow filters, and then are available in any directshow compatible
application. The directshow filters are managed by the 1t100agent service, so you can use them only if the service is
running.

To uninstall the 1100 family drivers, tools and services, run the uninstall script located

NOTE
in the installation directory.

2.2. Linux

Download and extract the latest 1t100install_x.x.x.tar.gz, then execute the 1t100install.sh script to
deploy the 1t100 family drivers, tools and services. If necessary the previous version will be
uninstalled.

After a successful installation, the 1t100agent daemon will be started automatically and will be
(re)started automatically with each system (re)boot. If the installation failed, please check the
1t100install.log file.

The 1t100agent can be controlled using the 1t100agent command line interface. Please see
[control_service].

The LT boards plugged into the host should appear in the /proc directory. Please type the command
below to check the boards status.

Get installed boards status

$ TBD

V4L2

All the boards inputs are accessible through V4L2 drivers, and then are available in any V4L2/GStreamer
compatible application. The V4L2 drivers are managed by the 1t100agent service, so you can use them only if the
service is running.

To uninstall the 1t100 family drivers, tools and services, run the uninstall script located

NOTE
in the installation directory.

2.3. SDK

Download the latest 1t100sdk_x.x.x_{windows,linux}.zip archive and extract it anywhere you want.
The SDK contains the API documentation and the API libraries for the following languages Go, C++,
Python and C#.

Please navigate through the examples to learn how to program the API.

You can also make scripts with the ecurl command line interface tool. Please see [ecurl].

2.4. Tools

Two tools are installed along with the 1t100agent service:

* ecurl, a command line tool to send REST API requests to the 1t100agent.

* ecam, a graphical user interface to control and/or test the LT boards.

By default, the tools are added to the PATH environment variable, so you can use them from any
command line.

2.5. LT Board Firmware

If the boards installed into the host need a firmware update, the 1t100agent service will automatically
make an update when the service start. This step can take up to 2 minutes depending to the board type.
The service availability will be delayed until the update is completed.

Please use the command below if you want to check the boards firmwares version.

Boards status

$ 1t100agent version

This is also possible to manually update the board firmwares.

Boards status with update

$ 1t100agent update

2.6. 1t100agent Controls

To use the LT API you need to ensure that the 1t100agent is running on your host system.
The following commands will help you to control the 1t100agent.

Install the service

$ 1t100agent install

Uninstall the service

$ 1t100agent uninstall

Check the service version

$ 1t100agent version

Check the service status

$ 1t100agent status

Start the service

$ 1t100agent start

Stop the service

$ 1t100agent stop

Restart the service

$ 1t100agent restart

Run interactively (for debugging purpose, does not start the service)

$ 1t100agent run

Chapter 3. ecurl (CLI)

The ecurl program is a developer tool to help you make requests on the LT API directly from your
terminal. The tool is deployed along with the It100agent at the installation stage. The tool has been
developed with our SDK and is available for Linux and Windows platforms.

You can use the ecurl CLI to:

» Create, retrieve, update or delete LT API objects.
* Play and record any video or audio resources.
» Use the multi-channel feature of the LT boards.

e Control and test the installed LT boards.

NOTE The 1t100agent has to be running otherwise ecurl will not work.

3.1. GET command

$ ecurl get <url>
Perform a GET requests to retrieve an individual API object designed by the <url>.

Example 1. GET

Retrieve [t100 family agent infos

$ ecurl get 1t100:/

Retrieve [t100 family board infos located at index 0

$ ecurl get 1t100:/0

3.2. POST command

$ ecurl post <url> [-d @file.json] [-d field=value] [-d data=@file.bin]

Create or modify the resource designated by the <url>.
Arguments may be added to the request with the -d optional flags. It is possible to use a file content as
input by preceding the filename with the @ character.

Example 2. POST

Create a virtual video input from a mp4 file

$ ecurl post 1t100:/canvas/0/init -d source=video.mp4

3.3. DELETE Command

$ ecurl delete <url>
Delete or reset the resource pointed by the <url>.

Example 3. DELETE

Unplug virtual video input

$ ecurl delete 1t100:/canvas/0

3.4. PLAY Command

$ ecurl play <url> [-d]

Play video or audio source until Ctrl + c is pressed.
Arguments may be added to the request with the -d optional flags.

Example 4. PLAY

Live display of sdi-in video

$ ecurl play 1t100:/0/sdi-in/@/data -d type=video/yuyv

Live listening of sdi-in audio

$ ecurl play 1t100:/0/sdi-in/0/data -d type=audio/pcm

Live playing of sdi-in audio and video

$ ecurl play 1t100:/0/sdi-in/0

3.5. REC Command

$ ecurl rec <url> [-d]

Record video or audio source until Ctrl + c is pressed.
Arguments may be added to the request with the -d optional flags.

Example 5. REC

Record sdi-in video into a mp4 file

$ ecurl rec 1t100:/0/sdi-in/0/file -d type=video/mp4

Chapter 4. API description

An API endpoint is a URL where the API receives requests about a specific resource. The endpoints are
accessed with URLs with the following syntax scheme:/path.

It comprises:

* A non-empty scheme component followed by a colon (1t100:).

* A path component consisting of a sequence of path segments separated by a slash (/).

For convenience, the URLs endpoints are described in tables where the scheme is omitted (1t100:) and
the vertical separators replace the path slash (/). Paths are read from left to right. Methods written into
a cell show the path available methods. An empty cell means that no method exists on the path.

4.1. Agent

The agent endpoint allows to retrieve the 1t100agent software version.

/
GET
GET /
4.1.1. Agent Object
revision string A t obiect
n
VCS hash. gent objec
. . {
time string "revision": "...hash...",
. "time": "...time...",
VCS time. "version": "3.2.1"
}

version string

VCS tagged version.

4.1.2. View 1t100agent Information

Retrieves the 1t100agent software version.

https://en.wikipedia.org/wiki/URL

Parameters

GET/
None.
request
{
Response "method": "GET",
)) "url": "1t100:/",
Returns the agent object if the request succeeded. "body": null
}
response
{
"revision": "...hash...",
"time": "...time...",
"version": "3.2.1"
}
Examples
v ecurl

$ ecurl get 1t100:/

v GO

var response lt.Agent // struct to store the response
err := 1t.Get("1t100:/", &response)

v C++

1t::Agent response; // struct to store the response
lt::error err = 1t::Get("1t100:/", response);

4.2. Board

The board endpoint allows to retrieve information on boards installed into the host.

:board

GET

GET /:board board

Device position into the host [0 ..

11.

4.2.1. Board Object

model string

Board object
Board model identifier. Could be 1t101, 1t102,)
1t122 or 1t124. If no devices is found, the value {
is left empty. "model" : "1t101",
"sn" : 64000000,
sn uint ..;Ega..: eé,
Board serial number.) bridge” : @
cpu uint

Embedded processing cpu tagged time.

fpga uint
Processing fpga tagged time.

bridge uint
Bridge fpga tagged time.

4.2.2. View Board Information

To retrieve the board information at a given position, send a GET request to the /:board endpoint.

Parameters
GET /:board
None.
request
{
Response "method": "GET",
o "url": "1t100:/0",
Returns the board object if the request succeeded. "body": null
}
response
{

"model" : "1t101",
"sn" : 64000000,

"CpU" : 0’
"fpga" : 0,
"bridge" : 0

10

Examples

v ecurl

$ ecurl get 1t100:/0

v GO

var response lt.Board // struct to store the response
err := 1t.Get("1t100:/0", &response)

v C++

1t::Board response; // object to store the response
1t::error err = 1t::Get("1t100:/0", response);

4.3. CVBS Input

This endpoint describes how to use cvbs-in inputs.
Native data can be accessed via the format path enumerator yuyv (video) and pcm (audio).

The pci endpoint allows to limit the maximum width, height, framerate and pixelrate coming
through the PCIe bus to save bandwidth and ensure best quality of service for multi-channel
scenarios.

Some of the proposed formats might require to use the host CPU and/or GPU before being delivered.

:board cvbs-in :id data
GET GET POST
file
POST
net
POST
GET /:board/cvbs-in/:id board
POST /:board/cvbs-in/:id/data Device position into the host [0 .. 1].
POST /:board/cvbs-in/:id/file id
POST /:board/cvbs-in/:id/net cvbs-in index number [0].

11

4.3.1. CVBS Input Object

audio json

Audio signal object.

- description string

A short description of the audio signal.

- format string

The audio sample format pcm.

- channels int

The number of audio channels.

- samplerate int

The number of audio samples per second.

- depth int

The number of bits per audio sample.

- signal string

none (not found), or locked (ready to use).

12

CVBS Input object
"audio": {
"description": "",
"fOrﬂ]at": Illl'

"channels": 0,
"samplerate": 0,
"depth": @,
"signal": "none"

i

"video": {
"description": "",
"fOrﬂ]at": Illl'
"size": [0, 0],
"framerate": 0,
"interlaced": false,
"signal": "none"

video json

Video signal object.

- description string

The video signal short description.

- format string

The pixel color format rgb444, yuv444 or yuv422.

- framerate float

The number of video frames per second.

- size [2]int
The video frame width and height in pixel
units.

- interlaced bool

The video frame interlaced status.

- signal string

none (not found), or locked (ready to use).

4.3.2. View CVBS Input Status

To retrieve the cvbs-in signal status, send a GET request to the cvbs-in/:id endpoint

13

Parameters
None.

request

{
Response "method": "GET",

GET /:board/cvbs-in/:id

"url": "1t100:/0/cvbs-in/0",

Returns the cvbs-in object if the request "body": null
succeeded. ¥

response

{

"audio": {
"description": "",
“format“: Illl'
"channels": 0,
"samplerate": 0,
"depth": 0,
"signal": "none"

bo

"video": {
"description": "",
“format“: Illl'
"size": [0, 0],
"framerate": 0,
"interlaced": false,
"signal": "none"

Examples

v ecurl

$ ecurl get 1t100:/0/cvbs-in/0

v GO

var response lt.Input // struct to store the response
err := 1t.Get("1t100:/0/cvbs-in/@", &response)

v C++

1t::Input response; // struct to store the response
1t::error err = 1t::Get("1t100:/0/cvbs-in/@", response);

4.3.3. CVBS Input from the command line

Please use our dedicated tool ecurl to access or test the cvbs-in capabilities from the command line.

These ecurl samples are provided for convenience and are not exhaustive. If you want to learn more

14

about LT API programming, please download our SDK and look at the provided examples.

View the cvbs-in signal status

$ ecurl get 1t100:/0/cvbs-in/0

Play audio (PCM)

$ ecurl play 1t100:/0/cvbs-in/0/data -d media=audio/pcm

Play video (YUYV)

$ ecurl play 1t100:/0/cvbs-in/@ -d media=video/yuyv

Play both audio and video

$ ecurl play 1t100:/0/cvbs-in/0

Make a JPEG capture

$ ecurl rec 1t100:/0/cvbs-in/@ -d media=image/jpeg

Make a PNG capture

$ ecurl rec 1t100:/0/cvbs-in/@ -d media=image/png

Record a movie clip

$ ecurl rec 1t100:/0/cvbs-in/0

4.4. SVIDEO Input

This endpoint describes how to use svideo-in inputs.
Native data can be accessed via the format path enumerator yuyv (video) and pcm (audio).

The pci endpoint allows to limit the maximum width, height, framerate and pixelrate coming
through the PCle bus to save bandwidth and ensure best quality of service for multi-channel
scenarios.

Some of the proposed formats might require to use the host CPU and/or GPU before being delivered.

15

:board svideo-in

GET

GET /:board/svideo-in/:id

POST /:board/svideo-in/:id/data
POST /:board/svideo-in/:id/file
POST /:board/svideo-in/:id/net

4.4.1. SVIDEO Input Object

audio json

Audio signal object.

- description string

A short description of the audio signal.

- format string

The audio sample format pcm.

- channels int

The number of audio channels.

- samplerate int

The number of audio samples per second.

- depth int

The number of bits per audio sample.

- signal string

none (not found), or locked (ready to use).

:id data

GET POST
file
POST
net
POST
board
Device position into the host [0 .. 1].
id
svideo-in index number [0].
SVIDEO Input object
{
"audio": {
"description": "",
"fOrﬂ]at": nn
"channels": 0,
"samplerate": 0,
"depth": @,
"signal": "none"
i
"video": {
"description": "",
"fOrﬂ]at": nn
"size": [0, 0],
"framerate": 0,
"interlaced": false,
"signal": "none"
}
}

16

video json

Video signal object.

- description string

The video signal short description.

- format string

The pixel color format rgb444, yuv444 or yuv422.

- framerate float

The number of video frames per second.

- size [2]int
The video frame width and height in pixel
units.

- interlaced bool

The video frame interlaced status.

- signal string

none (not found), or locked (ready to use).

4.4.2. View SVIDEO Input Status

To retrieve the svideo-in signal status, send a GET request to the svideo-in/:id endpoint

17

Parameters

None.

Response

GET /:board/svideo-in/:id

request

{
"method": "GET",
"url": "1t100:/0/svideo-in/0",

Returns the svideo-in object if the request "body": null

succeeded.

Examples

v ecurl

response

{

"audio": {
"description": "",
“format“: Illl'
"channels": 0,
"samplerate": 0,
"depth": 0,
"signal": "none"

bo

"video": {
"description": "",
“format“: Illl'
"size": [0, 0],
"framerate": 0,
"interlaced": false,
"signal": "none"

$ ecurl get 1t100:/0/svideo-in/@

v GO

var response lt.Input // struct to store the response
err := 1t.Get("1t100:/0/svideo-in/@", &Gresponse)

v C++

1t::Input response; // struct to store the response
1t::error err = 1t::Get("1t100:/0/svideo-in/@", response);

4.4.3. SVIDEO Input from the command line

Please use our dedicated tool ecurl to access or test the svideo-in capabilities from the command line.

These ecurl samples are provided for convenience and are not exhaustive. If you want to learn more

18

about LT API programming, please download our SDK and look at the provided examples.

View the svideo-in signal status

$ ecurl get 1t100:/0/svideo-in/0

Play audio (PCM)

$ ecurl play 1t100:/0/svideo-in/0/data -d media=audio/pcm

Play video (YUYV)

$ ecurl play 1t100:/0/svideo-in/@ -d media=video/yuyv

Play both audio and video

$ ecurl play 1t100:/0/svideo-in/0

Make a JPEG capture

$ ecurl rec 1t100:/0/svideo-in/@ -d media=image/jpeg

Make a PNG capture

$ ecurl rec 1t100:/0/svideo-in/@ -d media=image/png

Record a movie clip

$ ecurl rec 1t100:/0/svideo-in/0

4.5. DVI Input

This endpoint describes how to use dvi-in inputs.
Native data can be accessed via the format path enumerator yuyv (video) and pcm (audio).

The pci endpoint allows to limit the maximum width, height, framerate and pixelrate coming
through the PCle bus to save bandwidth and ensure best quality of service for multi-channel
scenarios.

Some of the proposed formats might require to use the host CPU and/or GPU before being delivered.

19

:board dvi-in

GET
GET /:board/dvi-in/:id
POST /:board/dvi-in/:id/data
POST /:board/dvi-in/:id/file
POST /:board/dvi-in/:id/net

4.5.1. DVI Input Object

audio json

Audio signal object.

- description string

A short description of the audio signal.

- format string

The audio sample format pcm.

- channels int

The number of audio channels.

- samplerate int

The number of audio samples per second.

- depth int

The number of bits per audio sample.

- signal string

none (not found), or locked (ready to use).

:id data

GET POST
file
POST
net
POST
board

Device position into the host [0 ..

id

dvi-in index number [0 .. 1].

DVI Input object

"audio": {
"description": "",
"format": ""
"channels": 0,
"samplerate": 0,
"depth": @,
"signal": "none"

}I

"video": {
"description": "",
"format": ""
"size": [0, 0],
"framerate": 0,
"interlaced": false,
"signal": "none"

20

1].

video json

Video signal object.

- description string

The video signal short description.

- format string

The pixel color format rgb444, yuv444 or yuv422.

- framerate float

The number of video frames per second.

- size [2]int
The video frame width and height in pixel
units.

- interlaced bool

The video frame interlaced status.

- signal string

none (not found), or locked (ready to use).

4.5.2. View DVI Input Status

To retrieve the dvi-in signal status, send a GET request to the dvi-in/:id endpoint

21

Parameters

GET /:board/dvi-in/:id

None.

request

{
Response "method": "GET",

. o "url": "1t100:/0/dvi-in/@",
Returns the dvi-in object if the request succeeded. "body": null

response

{

"audio": {
"description": "",
“format“: Illl'
"channels": 0,
"samplerate": 0,
"depth": 0,
"signal": "none"

bo

"video": {
"description": "",
“format“: Illl'
"size": [0, 0],
"framerate": 0,
"interlaced": false,
"signal": "none"

Examples

v ecurl

$ ecurl get 1t100:/0/dvi-in/0

v GO

var response lt.Input // struct to store the response
err := 1t.Get("1t100:/0/dvi-in/@0", &response)

v C++

1t::Input response; // struct to store the response
lt::error err = 1t::Get("1t100:/0/dvi-in/@0", response);

4.5.3. DVI Input from the command line
Please use our dedicated tool ecurl to access or test the dvi-in capabilities from the command line.

These ecurl samples are provided for convenience and are not exhaustive. If you want to learn more

22

about LT API programming, please download our SDK and look at the provided examples.

View the dvi-in signal status

$ ecurl get 1t100:/0/dvi-in/@

Play audio (PCM)

$ ecurl play 1t100:/0/dvi-in/0/data -d media=audio/pcm

Play video (YUYV)

$ ecurl play 1t100:/0/dvi-in/@ -d media=video/yuyv

Play both audio and video

$ ecurl play 1t100:/0/dvi-in/0

Make a JPEG capture

$ ecurl rec 1t100:/0/dvi-in/@ -d media=image/jpeg

Make a PNG capture

$ ecurl rec 1t100:/0/dvi-in/0 -d media=image/png

Record a movie clip

$ ecurl rec 1t100:/0/dvi-in/0

4.6. SDI Input

This endpoint describes how to use sdi-in inputs.
Native data can be accessed via the format path enumerator yuyv (video) and pcm (audio).

The pci endpoint allows to limit the maximum width, height, framerate and pixelrate coming
through the PCle bus to save bandwidth and ensure best quality of service for multi-channel
scenarios.

Some of the proposed formats might require to use the host CPU and/or GPU before being delivered.

23

:board sdi-in

GET
GET /:board/sdi-in/:id
POST /:board/sdi-in/:id/data
POST /:board/sdi-in/:id/file

POST /:board/sdi-in/:id/net

4.6.1. SDI Input Object

audio json

Audio signal object.

- description string

A short description of the audio signal.

- format string

The audio sample format pcm.

- channels int

The number of audio channels.

- samplerate int

The number of audio samples per second.

- depth int

The number of bits per audio sample.

- signal string

none (not found), or locked (ready to use).

:id data

GET POST
file
POST
net
POST
board

Device position into the host [0 ..

id

sdi-in index number [0 .. 1].

SDI Input object

"audio": {
"description": "",
"format": ""
"channels": 0,
"samplerate": 0,
"depth": @,
"signal": "none"

}I

"video": {
"description": "",
"format": ""
"size": [0, 0],
"framerate": 0,
"interlaced": false,
"signal": "none"

24

1].

video json

Video signal object.

- description string

The video signal short description.

- format string

The pixel color format rgb444, yuv444 or yuv422.

- framerate float

The number of video frames per second.

- size [2]int
The video frame width and height in pixel
units.

- interlaced bool

The video frame interlaced status.

- signal string

none (not found), or locked (ready to use).

4.6.2. View SDI Input Status

To retrieve the sdi-in signal status, send a GET request to the sdi-in/:id endpoint

25

Parameters

GET /:board/sdi-in/:id

None.

request

{
Response "method": "GET",

.. . . "url": "1t100:/0/sdi-in/0",
Returns the sdi-in object if the request succeeded. "body": null

response

{

"audio": {
"description": "",
“format“: Illl'
"channels": 0,
"samplerate": 0,
"depth": 0,
"signal": "none"

bo

"video": {
"description": "",
“format“: Illl'
"size": [0, 0],
"framerate": 0,
"interlaced": false,
"signal": "none"

Examples

v ecurl

$ ecurl get 1t100:/0/sdi-in/0

v GO

var response lt.Input // struct to store the response
err := 1t.Get("1t100:/0/sdi-in/@", &response)

v C++

1t::Input response; // struct to store the response
lt::error err = 1t::Get("1t100:/0/sdi-in/@0", response);

4.6.3. SDI Input from the command line
Please use our dedicated tool ecurl to access or test the sdi-in capabilities from the command line.

These ecurl samples are provided for convenience and are not exhaustive. If you want to learn more

26

about LT API programming, please download our SDK and look at the provided examples.

View the sdi-in signal status

$ ecurl get 1t100:/0/sdi-in/@

Play audio (PCM)

$ ecurl play 1t100:/0/sdi-in/0/data -d media=audio/pcm

Play video (YUYV)

$ ecurl play 1t100:/0/sdi-in/@ -d media=video/yuyv

Play both audio and video

$ ecurl play 1t100:/0/sdi-in/0

Make a JPEG capture

$ ecurl rec 1t100:/0/sdi-in/@ -d media=image/jpeg

Make a PNG capture

$ ecurl rec 1t100:/0/sdi-in/0 -d media=image/png

Record a movie clip

$ ecurl rec 1t100:/0/sdi-in/0

4.7. Canvas

The canvas endpoint is both a virtual audio/video source and a dynamic synthetic image generator
which supports draw operations. It could be used to emulate the LT boards video inputs and to send
overlay images onto the hdmi and/or sdi outputs.

Data operations
canvas tid data
GET DELETE POST
file
POST

net

POST

27

GET /canvas/:id id

POST /canvas/:id/:format/data canvas index number [0 .. 7].
POST /canvas/:id/:format/file

POST /canvas/:id/:format/net

Draw operations
canvas rid init

GET POST
text

POST
line
POST

ellipse

POST

rectangle
POST
image
POST
video
POST

ops

POST

GET /canvas/:id id

POST /canvas/:id/init canvas index number [0 .. 7].
POST /canvas/:id/line

POST /canvas/:id/ellipse

POST /canvas/:id/rectangle

POST /canvas/:id/image

POST /canvas/:id/video

POST /canvas/:id/ops

28

4.7.1. Canvas Object

audio json

Audio signal object.

- description string

A short description of the audio signal.

- format string

The audio sample format pcm.

- channels int

The number of audio channels.

- samplerate int

The number of audio samples per second.

- depth int

The number of bits per audio sample.

- signal string

none (not found), or locked (ready to use).

29

Canvas object

"audio": {
"description": "",
"format": "",
"channels": 0,
"samplerate": 0,
"depth": @,
"signal": "none"

}I

"video": {
"description": "",
"format": "",
"size": [0, 0],
"framerate": 0,
"interlaced": false,
"signal": "none"

video json

Video signal object.

- description string

The video signal short description.

- format string

The pixel color format rgb444, yuv444 or yuv422.

- framerate float

The number of video frames per second.

- size [2]int
The video frame width and height in pixel
units.

- interlaced bool

The video frame interlaced status.

- signal string

none (not found), or locked (ready to use).

4.7.2. View Canvas Status

To retrieve the canvas signal status, send a GET request to the canvas/:id endpoint

30

Parameters

GET /canvas/:id

None.

request

{
Response "method": "GET",
)) "url": "1t100:/canvas/0",
Returns the canvas object if the request "body": null

succeeded. ¥

response

{

"audio": {
"description": "",
“format“: Illl'
"channels": 0,
"samplerate": 0,
"depth": 0,
"signal": "none"

bo

"video": {
"description": "",
“format“: Illl'
"size": [0, 0],
"framerate": 0,
"interlaced": false,
"signal": "none"

Examples

v ecurl

$ ecurl get 1t100:/canvas/0

v GO

var response lt.Input // struct to store the response
err := 1t.Get("1t100:/canvas/@", &response)

v C++

1t::Input response; // struct to store the response
lt::error err = 1t::Get("1t100:/canvas/0", response);

4.7.3. Delete Operation

Clear the canvas to a "NO SIGNAL" equivalent. Helps to simulate a video input loss.

31

Parameters

DELETE /canvas/:id
None.
request
{
Response "method": "DELETE",
) "url": "1t100:/canvas/0",
Returns an error if the request failed. "body": null
}
response
{
}
Examples
v ecurl

$ ecurl delete 1t100:/canvas/0

v GO

err := 1t.Delete("1t100:/canvas/0", nil, nil)

v C++

1t::error err = 1t::Delete("1t100:/canvas/@", nullptr, nullptr);

4.7.4. Init Operation

Clear the canvas and fill the background with the specified file, pattern or color.

32

Parameters
op string

Operation identifier init.

source string

The canvas size and framerate is derived from
the file content. Supported formats are jpeg,
png, bmp and mp4 files.

In the example, the source is a mp4 video file.

color [4]int
The RGBA background color with
transparency. Default [0,0,0,0].

size [2]int
Set the canvas width and height. Default
[3840,2160].

framerate float

Set the canvas refresh rate. Default 30.0.

Response

Returns the init operation parameters if the
request succeeded.

Examples

v ecurl

$ ecurl post 1t100:/canvas/0/init -d source=video.mp4

v GO

body := 1t.JSON{
"source": "video.mp4",
}

err := 1t.Post("1t100:/canvas/@/init", body, nil)

v C++

1t::json body = {
{"source", "video.mp4"}

Irs

POST /canvas/:id/init

request

{
"method": "POST",
"url": "1t100:/canvas/0/init",
"body": {
"source": "video.mp4",

}
}
response
{
llopll: Il_in,itll'
"source": "video.mp4",
"color": [0,0,0,0],
"size": [3840,2160],
"framerate": 30.0
}

lt::error err = 1t::Post("1t100:/canvas/@/init", body, nullptr);

33

4.7.5. Text Operation

Draw text onto the canvas.

34

Parameters
op string

Operation identifier text.

text string

Text to draw.

align string

Set the text position into the container.The
possible values are top-left, top, top-right,
left, center, right, bottom-left, bottom and
bottom-right. Default is center.

font string

Font type. Default is regular, could also be mono
and smallcaps.

fontSize int

Font size in pt unit. Default is 32.

italic bool

Draw the text with the italic attribute. Default
false.

bold bool

Draw the text with the bold attribute. Default
false.

color [4]int

The RGBA shape color with transparency.
Default {0,0,0,255}.

angle float

Rotation angle in degree unit. Default 0.

position [2]int
The top left corner {x, y} position of the
container. Default is {0,0}.

size [2]int

The container size {width, height}.

anchor [2]float

Move container along to the horizontal and

35

POST /canvas/:id/text

request

{
"method": "POST",
"url": "1t100:/canvas/0/text",
"body": {
"text": "hello world!",

}
}
response
{
"op": "text",
"text": "hello world!",
"align": "center",
"font": "regular",
"fontSize": 32,
"italic": false,
"bold": false,
"color": [255, 255, 255, 255],
"angle": 0,
"position": [0, 0],
"size": [3840, 2160],
"anchor": [0, 0]
}

Examples

v ecurl

$ ecurl post 1t100:/canvas/@/text -d text="hello world!"

v GO

body := 1t.JSON{
"text": "hello world!",
}

err := 1t.Post("1t100:/canvas/@/text", body, nil)

v C++

1t::json body = {
{"text", "hello world!"}
I
1t::error err = 1t::Post("1t100:/canvas/@/text", body, nullptr);

4.7.6. Line Operation

Draw a line whose top left anchor is (x,y) coordinates.

36

Parameters
op string

Operation identifier line.

width int

The shape width size in pixel unit. Default 1.

color [4]int

The RGBA shape color with transparency.
Default {0,0,0,255}.

pattern []int

The dash size pattern in pixel units. The
pattern is repeated. Default no dash pattern:

{}

angle float

Rotation angle in degree unit. Default 0.

position [2]int

The top left corner {x, y} position of the
container. Default is {0,0}.

size [2]int

The container size {width, height}.

anchor [2]float

Move container along to the horizontal and
vertical {X, y} anchor in % of the container size
{width, height}. Default is {0,0}.

Response

Returns the line operation parameters if the
request succeeded.

37

POST /canvas/:id/line

request

{
"method": "POST",

"url": "1t100:/canvas/0/1ine",

"body": {
"position": [0,0],
"size": [3840,2160],
"color": [255,0,0,255]

}
}
response
{
"op": "line",
"width": 1,
"color": [255, @, @, 255],
"pattern": null,
"angle": 0,
"position": [0, 0],
"size": [3840, 21607,
"anchor": [0, 0]
}

Examples

v ecurl

$ ecurl post 1t100:/canvas/@/line \
-d position=0,0 \
-d size=3840,2160 \
-d color=255,0,0,255

v GO

body := 1t.JSON{
"position": [0,0],
"size": [3840,2160],
"color": [255,0,0,255]
}
err := 1t.Post("1t100:/canvas/@/1ine", body, nil)

v C++

1t::json body = {
{"position", {0,0}},
{"size", {3840,2160}},
{"color", {255,0,0,255}}
i
1t::error err = 1t::Post("1t100:/canvas/@/1ine", body, nullptr);

4.7.7. Ellipse Operation

Draw an ellipse whose top left anchor is (x,y) coordinates.

38

Parameters
op string

Operation identifier ellipse.

width int

The shape width size in pixel unit. Default 1.

color [4]int

The RGBA shape color with transparency.
Default {0,0,0,255}.

pattern []int

The dash size pattern in pixel units. The
pattern is repeated. Default no dash pattern:

{}

fill [4]int

Fill the shape with a RGBA color. Default is
{0,0,0,0}.

angle float

Rotation angle in degree unit. Default 0.

position [2]int
The top left corner {x, y} position of the
container. Default is {0,0}.

size [2]int

The container size {width, height}.

anchor [2]float

Move container along to the horizontal and
vertical {X, y} anchor in % of the container size
{width, height}. Default is {0,0}.

Response

Returns the ellipse operation parameters if the
request succeeded.

Examples

v ecurl

$ ecurl post 1t100:/canvas/@/ellipse \

39

POST /canvas/:id/ellipse

request

{
"method": "POST",
"url": "1t100:/canvas/@/ellipse",
"body": {
"position": [0,0],
"size": [3840,2160],
"color": [255,0,0,255],
"fill": [0,255,0,255]

}

}

response

{
llopll: Ile‘l'l-_ipsell’
"width": 10,
"color": [255, @, @, 255],
"pattern": null,
"fi11": [0, 255, @, 255],
"angle": 0,
"position": [0, 0],
"size": [3840, 2160],
"anchor": [0, 0]

}

-d position=0,0 \

-d size=3840,2160 \

-d color=255,0,0,255 \
-d fi11=0,255,0,255

v GO

body := 1t.JSON{
"position": [0,0],
"size": [3840,2160],
"color": [255,0,0,255],
"fi11": [0,255,0,255]

err := 1t.Post("1t100:/canvas/@/ellipse”, body, nil)

v C++

1t::json body = {
{"position", {0,0}},
{"size", {3840,2160}},
{"color", {255,0,0,255}},
{"fi11", {0,255,0,255}}
¥
lt::error err = 1t::Post("1t100:/canvas/@/ellipse", body, nullptr);

4.7.8. Rectangle Operation

Draw a rectangle whose top left anchor is (x,y) coordinates.

40

Parameters
op string

Batch operation identifier rectangle.

width int

The shape width size in pixel unit. Default 1.

color [4]int

The RGBA shape color with transparency.
Default {0,0,0,255}.

pattern []int

The dash size pattern in pixel units. The
pattern is repeated. Default no dash pattern:

{}

fill [4]int

Fill the shape with a RGBA color. Default is
{0,0,0,0}.

rounded int

The shape corner radius in pixel unit. Default
0.

angle float

Rotation angle in degree unit. Default 0.

position [2]int
The top left corner {x, y} position of the
container. Default is {0,0}.

size [2]int

The container size {width, height}.

anchor [2]float

Move container along to the horizontal and
vertical {X, y} anchor in % of the container size
{width, height}. Default is {0,0}.

Response

Returns the rectangle operation parameters if the
request succeeded.

41

POST /canvas/:id/rectangle

request

{
"method": "POST",
"url": "1t100:/canvas/@/rectangle"”,
"body": {
"position": [100,100],
"size": [400,400],
"fill": [e,0,255,255]

}
}
response
{
"op": "rectangle",
"width": 1,
"color": [255, 255, 255, 255],
"pattern": null,
"fill": [0, @, 255, 255],
"rounded": 0,
"angle": 0,
"position": [100, 100],
"size": [400, 400],
"anchor": [0, 0]
}

Examples

v ecurl

$ ecurl post 1t100:/canvas/@/rectangle \
-d position=100,100 \
-d size=400,400 \
-d fil1=0,0,255,255

v GO

body := 1t.JSON{
"position": [100,100],
"size": [400,400],
"fi11": [0,0,255,255]
}
err := 1t.Post("1t100:/canvas/@/rectangle”, body, nil)

v C++

1t::json body = {
{"position", {100,100}},
{"size", {400,400}},
{"fi11", {0,0,255,255}}
%
1t::error err = 1t::Post("1t100:/canvas/@/rectangle", body, nullptr);

4.7.9. Image Operation
There are two ways to draw an image on the canvas:

» Using a file path with the source parameter. The format, data, width and height parameters are
ignored.

* Using a data buffer with the data parameter. The format parameter is mandatory and if a raw
format is used (i.e. rgba or rgb), the width and height parameters are required too.

42

Parameters
op string

Operation identifier image.

source string

Filepath. Supported formats are jpeg, png and
bmp files.

angle float

Rotation angle in degree unit. Default 0.

position [2]int
The top left corner {x, y} position of the
container. Default is {0,0}.

size [2]int

The container size {width, height}.

anchor [2]float

Move container along to the horizontal and
vertical {X, y} anchor in % of the container size
{width, height}. Default is {0, 0}.

format string
The image data format. Could be rgba, rgb, bmp,
jpeg or png.

data []byte

Image data buffer.

width int

Image width. Mandatory for rgba or rgb data
buffer.

height int

Image height. Mandatory for rgba or rgb data
buffer.

Response

Returns the image operation parameters if the
request succeeded.

43

POST /canvas/:id/image

request

{

"method": "POST",
"url": "1t100:/canvas/0/image",
"body": {
"source": "image.png",
"position": [0,0],
"size": [640,480]

response

{

"op": "image",
"source": "image.png",
"angle": 0,
"position": [0, 0],
"size": [640, 480],
"anchor": [0, 0],
"format": "",

"data": null,

"width": 0,

"height": 0

Examples

v ecurl

$ ecurl post 1t100:/canvas/@/image \
-d source=image.png \
-d position=0,0 \
-d size=640,480

v GO

body := 1t.JSON{
"source": "image.png",
"position": [0,0],
"size": [640,480]
}
err := 1t.Post("1t100:/canvas/@/image", body, nil)

v C++

1t::json body = {
{"source", "image.png"},
{"position", {0,0}},
{"size", {640,480}}
i
lt::error err = 1t::Post("1t100:/canvas/@/image", body, nullptr);

4.7.10. Video Operation

Place a video on the canvas.

44

Parameters
op string

Batch operation identifier video.

source string

Supported sources are :board/sdi-in/:id,
:board/hdmi-in/:id and canvas/:1id.

position [2]int

The top left corner {x, y} position of the
container. Default is {0,0}.

size [2]int

The container size {width, height}.

anchor [2]float

Move container along to the horizontal and
vertical {X, y} anchor in % of the container size
{width, height}. Default is {0,0}.

Response

Returns the video operation parameters if the
request succeeded.

Examples

v ecurl

$ ecurl post 1t100:/canvas/0/video \
-d source=0/sdi-in/@ \
-d position=0,0 \
-d size=1920,1080

v GO

body := 1t.JSON{
"source": "0/sdi-in/0@",
"position": [0,0],
"size": [1920,1080]

}

err := 1t.Post("1t100:/canvas/@/video", body, nil)

v C++

1t::json body = {
{"source", "0/sdi-in/0"},
{"position", {0,0}},
{"size", {1920,1080}}

I

45

POST /canvas/:id/video

request

{
"method": "POST",
"url": "1t100:/canvas/0/video",
"body": {
"source": "0/sdi-in/0",
"position": [0,0],
"size": [1920,1080]

}
}
response
{
llopll: Ilv_ideolll
"source": "0/sdi-in/0",
"position": [0, 0],
"size": [1920, 10801,
"anchor": [0, 0]
}

1t::error err = 1t::Post("1t100:/canvas/@/video", body, nullptr);

4.7.11. Batch Operations

Draw operations in batch.

Parameters
ops []ISON

Array of canvas operations.

Response

Returns the operations if succeeded.

4.7.12. Canvas from the command line

POST /canvas/:id/ops

request

$ ecurl post 1t100:/canvas/@/ops \
-d ops=@draw.json

response
{

"ops": { MM 1,
}

Please use our dedicated tool ecurl to access or test the canvas capabilities from the command line.

These ecurl samples are provided for convenience and are not exhaustive. If you want to learn more
about LT API programming, please download our SDK and look at the provided examples.

View the canvas signal status

$ ecurl get 1t100:/canvas/0

Play audio (PCM)

$ ecurl play 1t100:/canvas/0/data -d media=audio/pcm

Play video (YUYV)

$ ecurl play 1t100:/canvas/@ -d media=video/yuyv

Play both audio and video

$ ecurl play 1t100:/canvas/0

Make a JPEG capture

$ ecurl rec 1t100:/canvas/@ -d media=image/jpeg

46

Make a PNG capture

$ ecurl rec 1t100:/canvas/@ -d media=image/png

Record a movie clip

$ ecurl rec 1t100:/canvas/0

4.8. Client

The client endpoint retains the connection context, the living memory references and the running
workers. Once a client is done with a resource, it has to delete it. If the client dies or ceases to
communicate, the 1t100agent will automatically collect the resources and clean them.

client jobs tid start
DELETE GET |DELETE POST
stop
POST
pause
POST
refs tid
DELETE
GET /client/jobs/:1id id
POST /client/jobs/:id/start Object identifier

POST /client/jobs/:id/pause
POST /client/jobs/:id/stop
DELETE /client/jobs/:id

DELETE /client/jobs

DELETE /client/refs/:id

4.8.1. Fetch Worker Updates

47

The long running task(s) (eg: recording a mp4) are
child processe(s) of the client(s) which have
initiated the request(s). These task(s) are
processed by worker(s) that are attached into the
client(s) context(s) with an unique ID.

Retrieving the updates periodically ensures that
the tasks are properly processed and allow to
fetch the data out of the 1t100agent.

4.8.2. Terminate Worker

Terminate a worker task.

4.8.3. Terminate ALL Workers

Terminate all the client workers tasks.

4.8.4. Release Referenced Memory

Clients and 1t100agent communicate by
exchanging references on shared memory blocks.

Once processed, it is recommended to expressly
release the references, otherwise the 1t100agent
memory pool can run out of shared memory
blocks.

Depending to vyour development language
(Garbage Collected or not), the SDK wrapper
might automatically release the memory for you.

48

GET /client/job/:id

Please go to Section 4.9, “Workers” to learn the
complete workflow usage.

DELETE /client/job/:id

Please go to Section 4.9, “Workers” to learn the
complete workflow usage.

DELETE /client/job

Please go to Section 4.9, “Workers” to learn the
complete workflow usage.

DELETE /client/ref/:id

Please go to Section 4.9, “Workers” to learn the
complete workflow usage.

4.9. Workers

All the API processing is based on Worker objects created by the server (on behalf of the clients
requests) to serve data or metadata packets. The workers creation endpoints are easily recognizable by
their URLs patterns:

turl data

POST
file

POST

net

POST

POST /:url/data url

POST /:url/file URL can be any valid API resource that point

toward a data, a file or a net endpoint.
POST /:url/net

The workers can serve streams under 3 types:

* data the de facto interface to process data into a third party application. These kind of workers use
the host shared memory mechanisms with pooled buffers to distribute large chunk of data to
multiple concurrent consumers.

» file this helps you record files onto the host hard drive. These workers supports splitting and
containerized formats like mp4, asf, or avi. Each time that a file is finished or split, the completed
field of the Worker object is set to true. The next request will point toward a new file via a
redirected URL.

* net this maps any data source to the network adapter. Not ready at this time. TBD

Finally, the Workers transfer packets from the LT agent to the LT clients. Packets may contains data,
metadata, video, audio, ...

4.9.1. Worker Creation

A type has to be submitted to the data, file or net endpoint to create a worker. The type is a string that
describes the data class audio, image and video and the data format. The type is a mandatory field and
must be set to a valid value.

Audio: audio/pcm, audio/wav, audio/aac.

Image: image/yuyv, image/yuv422, image/nv12, image/rgba, image/rgb, image/jpeg, image/png, image/bmp.

49

Video: video/yuyv, video/yuv422, video/nv12, video/rgba, video/rgb, video/jpeg, video/png,

video/h264, video/mp4.

4.9.1.1. Audio Data Worker

Create a worker object that serves audio data packets.

Parameters
media string

Media type identifier. Could be audio/pcm or
audio/aac.

source string

The audio board input source: :board/dvi-
in/:id, :board/sdi-in/:id and canvas/:id.

channels int

The number of audio channels. Default 2.

samplerate int

The audio sample rate. Default 48000.

depth int
The audio sample depth. Default 16.

Response

Returns the location of the worker object onto the
form of a redirect error.

Examples

v GO

POST /:url/data

request

{

"method": "POST",

"url": "1t100:/:url/data",

"body": {
"media": "audio/pcm",
"source": "0/dvi-in/0",
"channels": 2,
"samplerate": 48000,

"depth": 16

}

}

response

{
"location": "1t100:/client/jobs/..."
"error": "redirect"

}

err := 1t.Post("1t100:/:ur1/data", 1t.AudioDataWorker{Media: "audio/pcm"}, nil)

if lerrors.Is(err, 1t.ErrRedirect) {
log.Fatal("worker creation failed:", err)
}

workerURL := 1t.RedirectlLocation(err)

v C++

1t::error err = 1t::Post("1t100:/:url/data", 1t::AudioDataWorker{ "audio/pcm" }, nullptr);

if ('1t::ErrorIs(err, 1t::ErrRedirect)) {
logFatal("worker creation failed:" + err);
}

30

video/bmp,

string workerURL = 1t::RedirectlLocation(err);

4.9.1.2. Image Data Worker

Create a worker object that serves one image data packet.

Parameters
.) POST /:url/data
media string

Media type identifier. Could be image/yuyv, request
image/yuv422, image/nv12, image/rgba, image/rgb,

{
image/jpeg, image/png and image/bmp. "method": "POST",
"url": "1t100:/:url/data",
: "body": {
source string "media": "video/nv12",
; ; .. : "source": "@/dvi-in/@",
The audio board input source: :board/dvi "eize"s [1920, 1080]
in/:id, :board/sdi-in/:id and canvas/:1id. }
}

size [2]int

The image frame size. Let empty to use the "€SPONs€
default size. {

"location": "1t100:/client/jobs/...

"error": "redirect"

Response

Returns the location of the worker object onto the
form of a redirect error.

Examples

v GO

err := 1t.Post("1t100:/:ur1/data", 1t.ImageDataWorker{Media: "image/jpeg"}, nil)
if lerrors.Is(err, 1t.ErrRedirect) {

log.Fatal("worker creation failed:", err)
}

workerURL := 1t.RedirectlLocation(err)

v C++

1t::error err = 1t::Post("1t100:/:url/data", 1t::ImageDataWorker{ "image/jpeg" }, nullptr);
if ('1t::ErrorIs(err, 1t::ErrRedirect)) {
logFatal("worker creation failed:" + err);

string workerURL = 1t::Redirectlocation(err);

51

4.9.1.3. Video Data Worker

Create a worker object that continuously serves video data packets.

Parameters
i i POST /:url/data
media string
Media type identifier. Could be video/yuyv, request
video/yuv422, video/nv12, video/rgba, video/rgb, {
video/jpeg, video/png, video/bmp, video/h264 "method": "POST",
. "url": "1t100:/:url/data",
and video/mp4. "body": {
"media": "video/nv12",
source string "source": "0/dvi-in/@",
. . . "size": [1920, 1080],
The audio board input source: :board/dvi- "framerate": 30
in/:id, :board/sdi-in/:id and canvas/:1id. } ¥
size [2]int
]) response
The image frame size. Let empty to use the
; {
default size. "location": "1t100:/client/jobs/...
"error": "redirect"
framerate float }

The video frame rate. Let empty to use the
default framerate.

Response

Returns the location of the worker object onto the
form of a redirect error.

Examples

v GO
err := 1t.Post("1t100:/:url/data", 1t.VideoDataWorker{Media: "video/nv12"}, nil)
if lerrors.Is(err, 1t.ErrRedirect) {
log.Fatal("worker creation failed:", err)
}

workerURL := 1t.RedirectLocation(err)

v C++
1t::error err = 1t::Post("1t100:/:url/data", 1t::VideoDataWorker{ "video/nv12" }, nullptr);
if ("t::ErrorIs(err, 1t::ErrRedirect)) {
logFatal("worker creation failed:" + err);

string workerURL = 1t::RedirectlLocation(err);

52

4.9.1.4. Audio File Worker

Create a worker object that records an audio file. The file is split when the file length or the file
duration is reached.

Parameters

.) POST /:url/data
media string

Media type identifier. Could be audio/pcm, request

audio/wav or audio/aac. {
"method": "POST",
source string "url": "1t100:/:url/data",
))) "body": {
The audio board input source: :board/dvi- "media": "audio/wav",
in/:id, :board/sdi-in/:1d and canvas/:id. “source”: "@/dvi-in/0",
channels": 2,
"samplerate": 48000,
channels int "depth": 16,
. "location": "/path/to/audio/directory",
The number of audio channels. Default 2. s e @,p Y
"splitlLength": 0,
samplerate int , "splitDuration": 0
The audio sample rate. Default 48000. }
depth int response
The audio sample depth. Default 16. {
"location": "1t100:/client/jobs/...",
location string) "error": "redirect"”

The file location.

duration int

The file duration in milliseconds to record.
Default 0 (infinite).

splitLength int
The file split length in bytes. Default @ (no
split).

splitDuration int

The file split duration in milliseconds. Default 0
(no split).

Response

Returns the location of the worker object onto the
form of a redirect error.

33

Examples

v GO

err := 1t.Post("1t100:/:url/data", 1t.AudioFileWorker{Media: "audio/wav"}, nil)
if lerrors.Is(err, 1t.ErrRedirect) {

log.Fatal("worker creation failed:", err)
}

workerURL := 1t.RedirectlLocation(err)

v C++

1t::error err = 1t::Post("1t100:/:url/data", 1t::AudioFileWorker{ "audio/wav" }, nullptr);
if ('1t::ErrorIs(err, 1t::ErrRedirect)) {

logFatal("worker creation failed:" + err);
}

string workerURL = 1t::RedirectlLocation(err);

4.9.1.5. Image File Worker

Create a worker object that records one image file.

Parameters
.) POST /:url/data
media string

Media type identifier. Could be image/yuyv, request
image/yuv422, image/nv12, image/rgba, image/rgb,

{
image/jpeg, image/png and image/bmp. "method": "POST",
"url": "1t100:/:url/data",
s "body": {
source string "media": "video/nv12",
; ; A . "source": "0/dvi-in/0",
The .audlo boar-dlmp.ut source: .bo.ard/dv1 "size"s [1920, 1080],
in/:1id, :board/sdi-in/:id and canvas/:id. "location": "/path/to/image/directory"
}
size [2]int ¥
The image frame size. Let empty to use the
_ response
default size.
{
. . "location": "1t100:/client/jobs/...",
location string "error”: "redirect”
The file location. t

Response

Returns the location of the worker object onto the
form of a redirect error.

54

Examples

v GO
err := 1t.Post("1t100:/:url/data", 1t.ImageFileWorker{Media: "image/jpeg"}, nil)
if lerrors.Is(err, 1t.ErrRedirect) {
log.Fatal("worker creation failed:", err)
}

workerURL := 1t.RedirectlLocation(err)

v C++
1t::error err = 1t::Post("1t100:/:url/data", 1t::ImageFileWorker{ "image/jpeg" }, nullptr);
if ('1t::ErrorIs(err, 1t::ErrRedirect)) {
logFatal("worker creation failed:" + err);
}

string workerURL = 1t::RedirectlLocation(err);

4.9.1.6. Video File Worker

Create a worker object that records a video file. The file is split when the file length or the file duration
is reached.

55

Parameters
media string

Media type identifier. Could be video/yuyv,
video/yuv422, video/nv12, video/rgba, video/rgb,
video/jpeg, video/png, video/bmp, video/h264
and video/mp4.

source string

The audio board input source: :board/dvi-
in/:id, :board/sdi-in/:id and canvas/:id.

size [2]int

The image frame size. Let empty to use the
default size.

framerate float

The video frame rate. Let empty to use the
default framerate.

location string

The file location.

duration int

The file duration in milliseconds to record.
Default 0 (infinite).

splitLength int
The file split length in bytes. Default @ (no
split).

splitDuration int

The file split duration in milliseconds. Default 0
(no split).

Response

Returns the location of the worker object onto the
form of a redirect error.

Examples

v GO

POST /:url/data

request

{

"method": "POST",

"url": "1t100:/:url/data",

"body": {
"media": "video/mp4",
"source": "@/dvi-in/@",
"size": [1920, 1080],
"framerate": 30,
"location": "/path/to/video/directory",
"duration": 0,
"splitLength": @,
"splitDuration": 0

}
}
response
{
"location": "1t100:/client/jobs/...",
"error": "redirect"
}

err := 1t.Post("1t100:/:url/data", 1t.VideoFileWorker{Media: "video/mp4"}, nil)

if lerrors.Is(err, lt.ErrRedirect) {

36

log.Fatal("worker creation failed:", err)

workerURL := 1t.RedirectlLocation(err)

v C++

1t::error err = 1t::Post("1t100:/:url/data", 1t::VideoFileWorker{ "video/mp4" }, nullptr);
if ('1t::ErrorIs(err, 1t::ErrRedirect)) {
logFatal("worker creation failed:" + err);

string workerURL = 1t::RedirectlLocation(err);

4.9.1.7. Audio Net Worker

TBD

4.9.1.8. Image Net Worker

TBD

4.9.1.9. Video Net Worker

TBD

4.9.2. Worker Object

The Worker object is the result of a GET request onto a worker endpoint. It contains the worker status,
data packets and metadata. A Worker might process one or multiples tracks and the SDK provides
helpers functions to automatically parse the worker into a comprehensive structure with the
contained audio and video packets.

57

name string

Worker object
Name.
. . {
location string "name": "
: "location": "",
Location. "start": 1644248369455566,
"duration": 16667,
start int64 "size": 4147200,
L . "status": "completed",
Unix timestamp at which the worker started. "packets": {
ll@ll: {
duration int64 , "... packet object #0 ..."
Elapsed time since the worker started. 5 }
size int

Quantity of byte processed since the segment
started.

status string

running, paused, break (file split) or completed.

packets map[int]packet

Packets maps packet or shared packet of video,
audio or text data samples and/or metadata
samples.

4.9.3. Packet Object
The packet object wraps the data and the metadata of an audio, video, ... track.

The SDK provides a helper function to automatically parse the packets into a comprehensive structure.

38

track int

The track ID of the packet if the worker process
multiple tracks.

type string
The packet type and format.

signal string

none (not found), or locked (ready to use).

timestamp int64

Unix timestamp at which the packet has been
sampled.

data []byte
The packet plain data buffer.

meta JSON

The metadata fields for audio and video. See
audio and video metadata objects.

4.9.3.1. SharedPacket Object

Packet object
"track": 0,
"type": "audio/pcm",
"signal": "none",

"timestamp": 1695816377020822,
"data": "...",
"meta": {
"channels": 2,
"samplerate": 48000,
"depth": 16,
"samples": 1600
}I

This has the same description as the Packet object, use only for reference. To lower the cpu
consumption and the latency, big data blocks are transmitted to the user using the OS standard shared
memory mechanisms. No memory copy is involved in the packet transmission.

The SDK provides a helper function to automatically parse the shared packets into a comprehensive
structure.

39

track int

The track ID of the packet if the worker process
multiple tracks.

type string
The packet type and format.

signal string

none (not found), or locked (ready to use).

timestamp int64

Unix timestamp at which the packet has been
sampled.

meta JSON

The packet metadata fields for video, audio, ...

ref string

The shared memory reference to be deleted
once the data has been used.

client string

The client id which has made the request.

handle string

The handle that allows to access the shared
memory.

size int

The shared memory block total capacity.

ptr int

The pointer at which the shared buffer start
inside the shared memory block.

len int

The shared buffer length inside the shared
memory block.

4.9.3.2. Audio Metadata

Packets with audio/* type.

60

SharedPacket object

"track": 0,

"type": "video/yuyv",

"signal": "locked",

"timestamp": 1695815814430318,

"len": 16588800,

"meta": {
"size": [1920, 108017,
"framerate": 30,
"interlaced": false,
"keyframe": true

}I

"ref": "1t100:/client/ref/...",

"client": "g5jrzd20IQuxCq1IJWICUA",

"handle": "1t100_global_24",

"size": 1275592704,

"ptr": 478347264

channels int

The number of channels. Audio metadata

samplerate int "channels": 2,
The number of samples per second. ;:gi;era% 3 AL,
"samples": 800,
depth int }
The number of bits per sample.
Samples int
The number of samples contained into the
buffer.
4.9.3.3. Image Metadata
Packets with image/* type.
size [2]int
, _ Image metadata
The image frame size.
{
"size": [1920, 1080],
}
4.9.3.4. Video Metadata
Packets with video/* type.
size [2]int .
_ _ Video metadata
The video frame size.
{
framerate float "size": [1920, 1080],
The number of video frame per second. L ireEs” 8 0,
interlaced": false,
"keyframe": true
interlaced bool }

Is the frame interlaced.

keyframe bool

Is the frame intra coded.

61

4.9.4. Data Worker Workflow

Create a worker object that serves data packets. Data packets could be of type audio, image or video.

Create Worker
> POST 1t100:/canvas/0/yuyv/data [POST/:ur”data)

¢ A worker is created.

New workerURL endpoint

e Check non-null error.
. ' GET workerURL
e Retrieve worker location with 'redirect

Stop ?
URL < \L > Process Worker

> GET workerURL CPOSTworkerURLlstop) JSON Worker object A
Y
* JSON Worker object is returned. End fyl 2 e
es
¢ Check non-null error. é

> Check EndOfStream signal

» Exit or pass to the next step.

> Process Worker

» See data worker processing below.

* Continue the worker loop until the
EndOfStream signal is met.

62

> Monitor the Worker progress ‘

* Start, duration, total processed bytes Process Data Worker)

> Loop over the Worker Packets

Monitor
* Grab one packet. — worker.Start
infos worker.Duration
* Check the packet track ID. worlier-l-sength
worker.Status

* Check the packet track signal.
n=20

> Process the Packet

« Check the media type field. C""orker'PaCkets["] <

Packet n

e Parse and load the metadata.

* Use the data. Packet Route
track infos el et
> Release the Packet packet.Signal

* Call the packet.Close() function. v

. Process
» Shared memory reference is released. Packet packet.Media Increment n
payload packet.Data

packet.Meta

¢ Check non-null error.

Release
packet.Close()

4.9.5. File Worker Workflow

Create a worker object that records a file. The file is split when the file length or the file duration is
reached. Files could be of type audio, image or video.

63

Create file worker
> POST 1t100:/canvas/@/png/file

e A worker is created.

POST /:url/file

New workerURL endpoint

e Check non-null error. l v
GET workerURL
> GET worker

* JSON Worker object is returned. <S'1P ? > Process Worker

¢ Check non-null error. [POST workerURL/stop] VJSON Worker object A
R End signal ? no
> Check EndOfStream signal pes
 EXit or pass to the next step. é

> Process Worker

» See process Worker workflow above.

* Continue the worker loop

64

Process file worker ‘

> GET 1t100:/canvas/@/png/file
* JSON Worker object is returned.

Process File Worker/

Monitor
e Check non-null error. worker.Name

worker.Location
> Monitor the Worker progress Worker
infos worker.Start

* Name, location Worklfr.DLuratit?]n
worker.Leng

worker.Status

o Start, duration, total processed bytes,
completed n=0

> Loop over the Worker Packets [)
worker.Packets[n]

* Grab one packet.

Packet n

* Check the packet track ID.

. Route
* Check the packet track signal. : Pa:(‘?!‘eft packet.Track
IrYSLS Hioks packet.Signal

> Process the Packet ¢
* Check the media type field.

@ Monitor Increment n
packet.Media
* Parse and load the metadata. payload packet.Meta

> Release the Packet

Release

* Call the packet.Close() function.
packet.Close()

¢ Check non-null error.

65

Chapter 5. Cheatsheet

/

GET

:board

GET

:board cvbs-in :id data

GET GET POST
file
POST
net
POST

:board svideo-in :id data

GET GET POST
file
POST
net
POST

:board dvi-in :id data

GET GET POST
file
POST
net
POST

66

:board sdi-in :id data

GET GET POST
file

POST

net

POST

canvas :id data

GET DELETE POST
file

POST

net

POST

canvas :id init

GET POST
text

POST

line

POST
ellipse

POST

rectangle

POST
image
POST

video

POST

ops

POST

67

client

jobs

DELETE

refs

:id start

GET | DELETE POST
stop
POST
pause
POST

:id

DELETE

68

Chapter 6. Changelog

3.2.1 (28/10/2024):
3.2.0 (17/10/2024):
3.1.0 (10/10/2024):

3.0.0 (17/09/2024):

69

	LT100 API: The programmer guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Installation
	2.1. Windows
	2.2. Linux
	2.3. SDK
	2.4. Tools
	2.5. LT Board Firmware
	2.6. lt100agent Controls

	Chapter 3. ecurl (CLI)
	3.1. GET command
	3.2. POST command
	3.3. DELETE Command
	3.4. PLAY Command
	3.5. REC Command

	Chapter 4. API description
	4.1. Agent
	4.1.1. Agent Object
	4.1.2. View lt100agent Information

	4.2. Board
	4.2.1. Board Object
	4.2.2. View Board Information

	4.3. CVBS Input
	4.3.1. CVBS Input Object
	4.3.2. View CVBS Input Status
	4.3.3. CVBS Input from the command line

	4.4. SVIDEO Input
	4.4.1. SVIDEO Input Object
	4.4.2. View SVIDEO Input Status
	4.4.3. SVIDEO Input from the command line

	4.5. DVI Input
	4.5.1. DVI Input Object
	4.5.2. View DVI Input Status
	4.5.3. DVI Input from the command line

	4.6. SDI Input
	4.6.1. SDI Input Object
	4.6.2. View SDI Input Status
	4.6.3. SDI Input from the command line

	4.7. Canvas
	4.7.1. Canvas Object
	4.7.2. View Canvas Status
	4.7.3. Delete Operation
	4.7.4. Init Operation
	4.7.5. Text Operation
	4.7.6. Line Operation
	4.7.7. Ellipse Operation
	4.7.8. Rectangle Operation
	4.7.9. Image Operation
	4.7.10. Video Operation
	4.7.11. Batch Operations
	4.7.12. Canvas from the command line

	4.8. Client
	4.8.1. Fetch Worker Updates
	4.8.2. Terminate Worker
	4.8.3. Terminate ALL Workers
	4.8.4. Release Referenced Memory

	4.9. Workers
	4.9.1. Worker Creation
	4.9.2. Worker Object
	4.9.3. Packet Object
	4.9.4. Data Worker Workflow
	4.9.5. File Worker Workflow

	Chapter 5. Cheatsheet
	Chapter 6. Changelog

