
LT310 API
The programmer guide

Enciris Technologies

Version 1.4.0, 28/11/2025

Table of Contents
1. Introduction. 1

2. Installation . 2

2.1. Windows . 2

2.2. Linux . 2

2.3. SDK . 3

2.4. Tools . 3

2.5. lt310agent Controls. 3

2.6. Board Firmware . 4

3. ecurl (CLI). 5

3.1. GET command . 5

3.2. POST command . 5

3.3. DELETE Command . 6

3.4. PLAY Command. 6

3.5. REC Command . 6

4. ecap (GUI) . 8

5. API Description . 9

5.1. Endpoint Structure . 9

5.2. Request and Response Format. 9

5.2.1. Retrieve parameters (GET) . 9

5.2.2. Update parameters (POST) . 9

5.2.3. Error Handling . 10

5.3. Audio/Video structures . 10

5.3.1. Audio object . 11

5.3.2. Video object . 11

5.4. Agent . 12

5.4.1. Agent Object . 12

5.4.2. Agent Configuration File . 12

5.5. Board . 13

5.5.1. Board Object. 13

5.6. HDMI Input . 14

5.6.1. HDMI Input Object . 14

5.6.2. EDID Object . 15

5.7. SDI Input . 16

5.7.1. SDI Input Object . 16

5.8. HDMI Output . 17

5.8.1. HDMI Output Object. 17

5.9. Canvas . 19

5.9.1. Canvas Object. 20

5.9.2. Understanding Canvas Operations . 20

5.9.3. Initialize Canvas . 21

5.9.4. Drawing Operations . 22

5.9.5. Clear Operation . 26

5.9.6. Single Operation Endpoint . 27

5.9.7. Batch Operations Endpoint. 27

5.9.8. Examples. 28

5.10. Workers. 33

5.10.1. Worker Creation . 35

5.10.2. Worker Object . 43

5.10.3. Packet and SharedPacket Objects . 44

5.10.4. Worker lifecycle . 47

5.10.5. Example 1: fetching audio data with a data worker . 50

5.10.6. Example 2: recording a video stream with a file worker . 52

6. Cheatsheet . 55

7. Changelog. 57

Chapter 1. Introduction
The LT API is built around the REST architecture (Representational State Transfer). REST defines a
structured approach for exposing system functionalities via a consistent interface.

A REST API is typically accessed using predefined URLs, which represent various resources
returned as JSON objects. These resources support standard methods such as GET , POST , and DELETE .

The LT API requests are processed by a host service called lt310agent, which utilizes standard OS
mechanisms such as IPC, SG-DMA, and shared memory. This ensures minimal latency when
handling API requests. To optimize performance, video and audio data are shared among
consumers using memory segments, allowing large data buffers and concurrent access.

With LT boards designed to be seen as hardware-as-a-service approach, the LT API abstracts
hardware-specific implementations behind a unified API. This allows users to focus on core
functionalities such as capturing, playing, recording, and streaming audio/video data.

The LT API is accessible through various clients, including the ecurl command line interface (CLI)
and the ecap graphical user interface (GUI). The API can also be accessed directly through C++,
Python, DirectShow, V4L2, NamedPipe, and UART.

Client Applications

REST
API

LT Agent

LT Board 0

LT Board 1

LT
DRIVER

1

https://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 2. Installation

2.1. Windows
Download and run the latest lt310install_x.x.x.exe to install the lt310 family drivers, tools and
services. If necessary the previous version will be uninstalled.

Once installed, the lt310agent service will be started automatically and will be (re)started
automatically with each system (re)boot.

The lt310agent can be controlled using the Windows Services Manager or the command line. For
more details, see [control_service].

The LT boards plugged into the host should appear in the Windows Device Manager under the
Sound, video and game controllers.

Directshow

All the boards inputs are accessible through directshow filters, and then are available in any directshow
compatible application. The directshow filters are managed by the lt310agent service, so you can use them only
if the service is running.

NOTE
To uninstall the lt310 family drivers, tools and services, run the installer and
choose "Remove" or use "Apps & features" menu.

2.2. Linux
Download and extract the latest lt310install_x.x.x.tar.gz, then run the lt310install.sh script to
install the lt310 family drivers, tools and services. If necessary, the previous version will be
uninstalled.

Upon successful installation, the lt310agent daemon will start automatically and will also
(re)started with each system (re)boot. If the installation fails, contact us and check the
lt310install.log file for details.

The lt310agent can be controlled using the command line. For more details, see [control_service].

V4L2

All the boards inputs are accessible through V4L2 drivers, and then are available in any V4L2/GStreamer
compatible application. The V4L2 drivers are managed by the lt310agent service, so you can use them only if
the service is running.

2

NOTE
To uninstall the lt310 family drivers, tools and services, run lt310_uninstall.sh from
the installation directory.

2.3. SDK
Download the latest lt310sdk_x.x.x.zip or lt310sdk_x.x.x.tar.gz archive and extract it anywhere
you want. The SDK contains the API documentation, the API libraries and examples for the
following languages Go, C++ and Python.

Please navigate through the examples to learn how to program the API.

You can also create scripts using the ecurl command-line tool. For more details, see [ecurl].

2.4. Tools
Two tools are installed along with the lt310agent service:

• ecurl - a command-line tool to send REST API requests to the lt310agent.

• ecap - a graphical user interface to control and/or test LT boards.

By default, the service and tools are added to the PATH environment variable, allowing you to use
them from any command line.

2.5. lt310agent Controls
To access the LT API, ensure that the lt310agent is installed and running on your host system.

You can use the following commands, which require administrative privileges, to control the
lt310agent.

Start the lt310agent

$ lt310agent start

Stop the lt310agent

$ lt310agent stop

Check the lt310agent and boards firmware version

$ lt310agent version

Check the lt310agent status

$ lt310agent status

3

2.6. Board Firmware
If the boards installed in the host require a firmware update, the lt310agent service will
automatically update them when the service starts. This process may take up to 2 minutes,
depending on the board type. The service will be unavailable until the update is completed.

Please use the command below if you want to check the firmware version of the boards.

Check the lt310agent and boards firmware version

$ lt310agent version

It is also possible to manually update the board firmware.

Update the boards firmware

$ lt310agent update

NOTE To update the board firmware, the lt310agent must be stopped.

4

Chapter 3. ecurl (CLI)
The ecurl program is a developer tool to help you make requests on the LT API directly from your
terminal. The tool is deployed along with the lt310agent at the installation stage. The tool has been
developed with our SDK and is available for both Linux and Windows platforms.

You can use the ecurl CLI to:

• Create, retrieve, update or delete LT API objects.

• Play and record any video or audio resources.

• Use the multi-channel feature of the LT boards.

• Control and test the installed LT boards.

NOTE The lt310agent must be running otherwise ecurl will not work.

3.1. GET command

$ ecurl get <url>

Send a GET request to retrieve a specific API object identified by the <url>.

▼ Examples

Retrieve information about the lt310 family agent

$ ecurl get lt310:/

Retrieve informaton from lt310 board located at index 0

$ ecurl get lt310:/0

Make a JPEG capture

$ ecurl get lt310:/0/{in}/0/file -d type=image/jpeg

3.2. POST command

$ ecurl post <url> [-d @file.json] [-d field=value] [-d data=@file.bin]

Create or modify the resource designated by the <url>.
Arguments may be added to the request with the -d optional flags. It is possible to use a file content
as input by preceding the filename with the @ character. By preceding the filename with the $
charater, relative path will be translated to the absolute full path.

5

▼ Examples

Create a virtual video input from a mp4 file

$ ecurl post lt310:/canvas/0/init -d source=$video.mp4

Load a custom HDMI-IN Edid

$ ecurl post lt310:/0/hdmi-in/0/edid -d data=@custom.edid

3.3. DELETE Command

$ ecurl delete <url>

Delete or reset the resource pointed by the <url>.

▼ Examples

Unplug virtual video input

$ ecurl delete lt310:/canvas/0

3.4. PLAY Command

$ ecurl play <url> [-d]

Play video or audio source until Ctrl  +  c is pressed.
Arguments may be added to the request with the -d optional flags.

▼ Examples

Live display of hdmi-in video

$ ecurl play lt310:/0/hdmi-in/0 -d media=video/yuyv

Live listening of hdmi-in audio

$ ecurl play lt310:/0/hdmi-in/0 -d media=audio/pcm

3.5. REC Command

$ ecurl rec <url> [-d]

6

Record video or audio source until Ctrl  +  c is pressed.
Arguments may be added to the request with the -d optional flags.

▼ Examples

Record hdmi-in video into a mp4 file

$ ecurl rec lt310:/0/hdmi-in/0/file -d media=video/mp4

Record camera video using NVENC hardware encoder and hevc codec

$ ecurl rec lt310:/0/camera/0 -d media=video/mp4 -d extra.hw=nvenc -d extra.codec=hevc

7

Chapter 4. ecap (GUI)
The ecap program is a simple graphical user
interface designed to capture and record using
the LT310 boards. The tool has been developed
with our SDK and is available for both Linux
and Windows platforms.

You can use the ecap GUI to:

• Play and record any video or audio content.

• Use the multi-channel features of the LT
boards.

• Control and test the installed LT boards.

NOTE The lt310agent must be running; otherwise, ecap will not work.

8

Chapter 5. API Description

5.1. Endpoint Structure
An API endpoint is a URL where the API processes requests for a specific resource. Endpoints are
accessed via URLs using the syntax scheme:/path, which consists of:

• A non-empty scheme component followed by a colon lt310:

• A path component made up of path segments separated by slashes /

For clarity in this documentation, the scheme lt310: is omitted from endpoint URLs.

5.2. Request and Response Format
All API endpoints use JSON format for requests and responses. Endpoints are divided into two
categories:

• Read-write endpoints: Support both GET and POST methods to retrieve and modify parameters

• Read-only endpoints: Support only GET method to retrieve current state

5.2.1. Retrieve parameters (GET)

To retrieve parameters, send a GET request to
the appropriate endpoint. The server returns
the complete object with all current parameter
values.

Example: GET request

request

{
 "method": "GET",
 "url": "lt310:/0/endpoint",
 "body": null
}

response

{
 "parameter1": "value1",
 "parameter2": 42
}

5.2.2. Update parameters (POST)

9

https://en.wikipedia.org/wiki/URL

To update parameters, send a POST request with
the attributes you want to modify. You don’t
have to send the complete object.

The server will:

• Validate the new values

• Apply the requested changes

• Return the complete object with all current
values (including unchanged ones)

Example: POST request

request

{
 "method": "POST",
 "url": "lt310:/0/endpoint",
 "body": {
 "parameter1": "newValue"
 }
}

response

{
 "parameter1": "newValue",
 "parameter2": 42
}

NOTE
Specific examples with actual endpoints and parameters are provided in each
endpoint’s documentation section.

5.2.3. Error Handling

If a request fails, the server returns an error response with an explicit message describing the
cause of the failure.

Common error causes include:

• Invalid parameter values (out of range)

• Missing required parameters

• Invalid endpoint or resource ID

• Hardware not responding

Example error response

{
 "error": "invalid parameter value",
 "message": "parameter must be between 0 and 100, got 150",
 "code": 400
}

5.3. Audio/Video structures
This section describes the JSON data structures used to represent audio and video stream
information. These structures are embedded in various endpoints related to audio/video sources
and outputs.

10

5.3.1. Audio object

The audio structure contains detailed
information about an audio stream.

Audio object

{
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
}

Attribute Type Description

description string A short description of the audio signal.

format string The audio sample format pcm.

channels int The number of audio channels.

samplerate int The number of audio samples per second.

depth int The number of bits per audio sample.

signal string The audio signal status: `none` (not found), or `locked` (ready
to use).

5.3.2. Video object

The video structure contains detailed
information about a video stream.

Video object

{
 "video": {
 "description": "",
 "format": "",
 "size": [0, 0],
 "framerate": 0,
 "interlaced": false,
 "signal": "none"
 }
}

Attribute Type Description

description string A short description of the video signal.

format string The pixel color format rgb444, yuv444 or yuv422.

size [2]int The video frame width and height in pixel units.

framerate float The number of video frames per second.

interlaced bool The video frame interlaced status.

11

Attribute Type Description

signal string The video signal status: `none` (not found), or `locked` (ready to
use).

5.4. Agent
The agent endpoint allows to retrieve the lt310agent software version.

Endpoint Method Description

/ GET Retrieve the current agent
information.

5.4.1. Agent Object

The agent object provides information about
the currently running lt310agent software.

GET lt310:/

{
 "version": "1.4.0"
}

Attribute Type Description

version string The current agent version.

5.4.2. Agent Configuration File

The agent can be configured using an optional configuration file named lt310agent.cfg.
Configuration options:

Option Description

WD Working directory for the agent (default: current working directory)

numCanvases Number of canvas objects to create (default: 4)

defaultPixelFormat Default pixel format for video input (default: nv12)

noVideoSignal Settings for when no video signal is detected (default: gray background
with "NO SIGNAL" text)

dshowFilters Enable/disable DirectShow filters (default: true)

v4l2Filters Enable/disable V4l2 filters (default: false)

devMode Enable/disable development mode (default: false)

12

If you choose to use it, place the file in the same directory as the application executable. This file is
already included in the agent folder. The configuration file is optional and may be omitted if no
custom configuration is required.

NOTE
The configuration file is read only when the agent starts. Any changes to the file will
take effect only after restarting the agent.

5.5. Board
The board endpoint provides access to information about boards installed in the host system.

Endpoint Method Description

/:board GET Retrieve information about the board
installed in the host system.

URL parameters

• :board Device position into the host [0 .. 1].

5.5.1. Board Object

The board object provides information about a
specific board installed in the host system. Board object

{
 "model" : "lt311",
 "sn" : 71000012,
 "cpu" : 0,
 "fpga" : 0,
 "bridge" : 0
}

Attribute Type Description

model string Board model identifier. Could be lt311, lt312`, lt313. If the board
model is not recognized, the value is left empty.

sn uint32 Board serial number.

cpu uint32 Embedded processing cpu tagged time.

fpga uint32 Processing fpga tagged time.

bridge uint32 Bridge fpga tagged time.

13

5.6. HDMI Input
This endpoint allows you to monitor the hdmi-in signal status and access the audio and video
streams, when available, in various formats.
Data can be retrieved as raw data or files, in different formats and encodings. Native formats are
yuyv or nv12 (video) and pcm (audio). Depending on the requested format, the host CPU and/or GPU
may be used for processing and conversion.

Endpoint Method Description

/:board/hdmi-in/:id GET Retrieve the current HDMI Input
information.

/:board/hdmi-in/:id/data POST Retrieve raw data from the HDMI
Input.

/:board/hdmi-in/:id/file POST Retrieve a file from the HDMI Input.

/:board/hdmi-in/:id/edid GET, POST Retrieve or set the EDID data for the
HDMI Input.

URL parameters

• :board Device position into the host [0 .. 1].

• :id hdmi-in index, dependent on the board type: not applicable for LT311, [0 .. 1] for LT312, 0
for LT313.

5.6.1. HDMI Input Object

The hdmi-in object contains the current state of
its audio and video signals.

GET /:board/hdmi-in/:id

{
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "",
 "format": "",
 "size": [0, 0],
 "framerate": 0,
 "interlaced": false,
 "signal": "none"
 }
}

Attribute Type Description

audio object Audio object for the HDMI Input.

14

Attribute Type Description

video object Video object for the HDMI Input.

5.6.2. EDID Object

The edid object provides the Extended Display
Identification Data (EDID) which describe
capabilities for a specific hdmi-in. A default
EDID is provided, it supports standard
resolutions up to 4K 60Hz and audio format 2
channels PCM 48kHz. The EDID can be
customized by the user, but make sure it
matches the board capabilities.

GET, POST /:board/hdmi-in/:id/edid

{
 "data": " ... 256-byte ... "
}

Attribute Type Description

data [256]byte The 256-byte E-EDID data.

▼ POST Example

These code examples demonstrate how to set custom EDID data for the HDMI Input.

▼ ecurl

To set a custom EDID using ecurl, the custom EDID file must be provided using the
data=@filename syntax:

$ ecurl post lt310:/0/hdmi-in/0/edid -d data=@customEdid.bin

▼ GO

body := lt.JSON{
 "data": "00FFFFFFFFFF00..." // 256-byte EDID data
}
err := lt.Post("lt310:/0/hdmi-in/0/edid", body, nil)

▼ C++

lt::json body = {
 {"data", "00FFFFFFFFFF00..."} // 256-byte EDID data
};
lt::error err = lt::Post("lt310:/hdmi-in/0/edid", body, nullptr);

▼ Python

edid = {
 "data": "00FFFFFFFFFF00..." # 256-byte EDID data
}
response, err = Post("lt310:/0/hdmi-in/0/edid", edid)

15

5.7. SDI Input
This endpoint allows you to monitor the sdi-in signal status and access the audio and video
streams, when available, in various formats.
Data can be retrieved as raw data or files, in different formats and encodings. Native formats are
yuyv or nv12 (video) and pcm (audio). Depending on the requested format, the host CPU and/or GPU
may be used for processing and conversion.

Endpoint Method Description

/:board/sdi-in/:id GET Retrieve the current SDI Input
information.

/:board/sdi-in/:id/data POST Retrieve raw data from the SDI Input.

/:board/sdi-in/:id/file POST Retrieve a file from the SDI Input.

URL parameters

• :board Device position into the host [0 .. 1].

• :id sdi-in index, dependent on the board type: [0 .. 3] for LT311, not applicable for LT312, [0
.. 1] for LT313.

5.7.1. SDI Input Object

The sdi-in object contains the current state of its
audio and video signals.

GET /:board/sdi-in/:id

{
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "",
 "format": "",
 "size": [0, 0],
 "framerate": 0,
 "interlaced": false,
 "signal": "none"
 }
}

Attribute Type Description

audio object Audio object for the SDI Input.

video object Video object for the SDI Input.

16

5.8. HDMI Output
Allows to configure the physical hdmi outputs on a LT board.

Endpoint Method Description

/:board/hdmi-out/:id GET, POST Retrieve or configure the specified
hdmi-out.

URL parameters

• :board Device position into the host [0 .. 1].

• :id hdmi-out index 0.

5.8.1. HDMI Output Object

The HDMI Output object provides configuration
and status information about a specific hdmi-
out.

GET, POST /:board/hdmi-out/:id

{
 "source": "auto",
 "overlay": "none",
 "overlayMode": "performance",
 "format": "auto",
 "link": "auto",
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "none",
 "format": "",
 "size": [0, 0],
 "framerate": 0,
 "interlaced": false,
 "signal": "none"
 }
}

Attribute Type Description

source string The hdmi-out source. Values can be auto or any valid board input
source.

overlay string The overlay source applied on the hdmi-out. Values can be
canvas/:id or none for no overlay.

overlayMode string Controls how overlay content is processed on the output device.
This parameter affects the quality and performance of overlays.
Values can be performance or quality.

17

Attribute Type Description

format string The color format applied to the output. Values can be auto,
rgb444, yuv444 and yuv422.

link string The hdmi-out link carrier. Values can be auto, fhd or off.

audio object The audio object for the HDMI Output (read only).

video object The video object for the HDMI Output (read only).

▼ GET Example

These code examples demonstrate how to retrieve the configuration and status of hdmi-out 0 on
board 0.

▼ ecurl

$ ecurl get lt310:/0/hdmi-out/0

▼ GO

var response lt.Output // struct to store the response
err := lt.Get("lt310:/0/hdmi-out/0", &response)

▼ C++

lt::Output response; // struct to store the response
lt::error err = lt::Get("lt310:/0/hdmi-out/0", response);

▼ Python

response, err = Get("lt310:/0/hdmi-out/0")

▼ POST Example

These code examples demonstrate how to enable the overlay with canvas 0 on hdmi-out 0.

18

▼ ecurl

$ ecurl post lt310:/0/hdmi-out/0 -d overlay=canvas/0

▼ GO

body := lt.JSON{
 "overlay": "canvas/0",
}
var response lt.Output // struct to store the response
err := lt.Post("lt310:/0/hdmi-out/0", body, &response)

▼ C++

lt::json body = {
 {"overlay", "canvas/0"}
};
lt::Output response; // struct to store the response
lt::error err = lt::Post("lt310:/0/hdmi-out/0", body, response);

▼ Python

body = {
 "overlay": "canvas/0"
}
response, err = Post("lt310:/0/hdmi-out/0", body)

5.9. Canvas
The canvas endpoint is both a virtual audio/video source and a dynamic synthetic image generator
which supports draw operations. It could be used to emulate the LT boards video inputs and to send
overlay images onto the hdmi and/or sdi outputs.

Data operations

Endpoint Method Description

/canvas/:id GET canvas :id configuration.

/canvas/:id/data POST Data stream

/canvas/:id/file POST File recording

Draw operations

Endpoint Method Description

/canvas/:id/init POST Initialize the canvas.

/canvas/:id/text POST Draw text on the canvas.

/canvas/:id/line POST Draw a line on the canvas.

/canvas/:id/ellipse POST Draw an ellipse on the canvas.

/canvas/:id/rectangle POST Draw a rectangle on the canvas.

19

Endpoint Method Description

/canvas/:id/image POST Put an image on the canvas.

/canvas/:id/video POST Put a video on the canvas.

/canvas/:id/clear POST Clear a canvas area or a source.

/canvas/:id/op POST Perform a single draw operation on
the canvas.

/canvas/:id/ops POST Perform multiple draw operations on
the canvas.

URL parameters

• :id canvas index [0 .. 3] (configurable with numCanvases in agent configuration file)

5.9.1. Canvas Object

The Canvas object provides status information
about a specific canvas.

GET /canvas/:id

{
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "",
 "format": "rgba",
 "size": [3840, 2160],
 "framerate": 30,
 "interlaced": false,
 "signal": "locked"
 }
}

Attribute Type Description

audio object The audio object for the Canvas (read only).

video object The video object for the Canvas (read only).

5.9.2. Understanding Canvas Operations

Each drawing operation works within a container - a rectangular area that defines where and how
the element is drawn. The schema of a container is illustrated below:

20

Canvas (width and height are defined by canvas initialization)

Size
(w, h)

position
(x, y)

Container

All operations share these common parameters:

Parameter Type Default Description

position [2]int [0, 0] The top-left corner coordinates {x, y} of the
container on the canvas.

size [2]int varies The container dimensions {width, height} in
pixels. This parameter is mandatory for most
operations.

angle float 0 Rotation angle in degrees, applied around the
center of the container.

anchor [2]int [0, 0] The pivot point for rotation and scaling
transformations, relative to the container’s top-
left corner.

The mandatory parameters for each operation are highlighted in the respective sections below.

Rendering Order Rules:

• Standard drawing operations (text, line, ellipse, rectangle, image) are stacked in the order they
are sent. Later operations draw over earlier ones.

• Video sources (video operations) are always rendered on top of all standard drawing operations.

• Among multiple video sources, the most recently added video appears on top of earlier video
sources.

Note: There is no layer system - operations cannot be reordered after being sent.

5.9.3. Initialize Canvas

21

Canvas initialization is done using the init
operation. This operation sets up the canvas
with the specified background color, size, and
framerate. If a file source is provided, the
canvas size and framerate are derived from the
file content.

POST /canvas/:id/init

{
 "op": "init",
 "source": "",
 "color": [255,255,255,255],
 "size": [3840,2160],
 "framerate": 30.0
}

Attribute Type Description

op string Operation identifier.

source string Path to the file source. Supported formats are jpeg, png, bmp and
mp4 files. If no source is provided, the canvas is filled with the
specified color.

color [4]int The RGBA background color with transparency. Default
[0,0,0,0].

size [2]int The video frame width and height in pixel units. Default
[3840,2160].

framerate float The video frame rate in frames per second. Default 30.0.

5.9.4. Drawing Operations

5.9.4.1. Text Operation

Draw text onto the canvas with various font
styles and attributes. The text can be positioned,
rotated and scaled within a defined container.

POST /canvas/:id/text

{
 "op": "text",
 "text": "hello world!",
 "align": "center",
 "font": "regular",
 "fontSize": 32,
 "italic": false,
 "bold": false,
 "color": [255, 255, 255, 255],
 "angle": 0,
 "position": [0, 0],
 "size": [3840, 2160],
 "anchor": [0, 0]
}

Attribute Type Description

op string Operation identifier.

text string Text to draw. This parameter is mandatory.

22

Attribute Type Description

align string Set the text position into the container. The possible values are
top-left, top, top-right, left, center, right, bottom-left, bottom
and bottom-right. Default is center.

font string Font type. Default is regular, could also be mono and smallcaps.

fontSize int Font size in pt unit. Default is 32.

italic bool Draw the text with the italic attribute. Default false.

bold bool Draw the text with the bold attribute. Default false.

color [4]int Text color in RGBA format. Default [0,0,0,255].

See Understanding Canvas Operations section for container parameters.

5.9.4.2. Line Operation

Draw a line within the container. The line
extends from the top-left corner to the bottom-
right corner of the container defined by position
and size.

POST /canvas/:id/line

{
 "op": "line",
 "width": 1,
 "color": [255, 0, 0, 255],
 "pattern": null,
 "angle": 0,
 "position": [0, 0],
 "size": [3840, 2160],
 "anchor": [0, 0]
}

Attribute Type Description

op string Operation identifier.

width int The shape width size in pixel unit. Default 1.

color [4]int The shape RGBA color. Default is [255,255,255,255].

pattern []int The dash size pattern in pixel units. The pattern is repeated.
Default no dash pattern: {}.

See Understanding Canvas Operations section for container parameters.

5.9.4.3. Ellipse Operation

23

Draw an ellipse that fits within the container
rectangle. The ellipse is inscribed in a bounding
box defined by the container’s position (top-left
corner) and size (width and height).

POST /canvas/:id/ellipse

{
 "op": "ellipse",
 "width": 10,
 "color": [255, 0, 0, 255],
 "pattern": null,
 "fill": [0, 255, 0, 255],
 "angle": 0,
 "position": [0, 0],
 "size": [3840, 2160],
 "anchor": [0, 0]
}

Attribute Type Description

op string Operation identifier.

width int The shape width size in pixel unit. Default 1.

color [4]int The shape RGBA color. Default is [255,255,255,255].

pattern []int The dash size pattern in pixel units. The pattern is repeated.
Default no dash pattern: {}.

fill [4]int Fill the shape with a RGBA color. Default is {0,0,0,0}.

See Understanding Canvas Operations section for container parameters.

5.9.4.4. Rectangle Operation

Draw a rectangle that exactly matches the
container boundaries. The rectangle’s top-left
corner is positioned at position coordinates, and
its dimensions are defined by size.

POST /canvas/:id/rectangle

{
 "op": "rectangle",
 "width": 1,
 "color": [255, 255, 255, 255],
 "pattern": null,
 "fill": [0, 0, 255, 255],
 "rounded": 0,
 "angle": 0,
 "position": [100, 100],
 "size": [400, 400],
 "anchor": [0, 0]
}

Attribute Type Description

op string Operation identifier.

width int The shape width size in pixel unit. Default 1.

color [4]int The shape RGBA color. Default is [255,255,255,255].

pattern []int The dash size pattern in pixel units. The pattern is repeated.
Default no dash pattern: {}.

24

Attribute Type Description

fill [4]int Fill the shape with a RGBA color. Default is {0,0,0,0}.

rounded int The rectangle corner rounding radius in pixel unit. Default 0.

See Understanding Canvas Operations section for container parameters.

5.9.4.5. Image Operation

Draw an image within the container. There are
two ways to provide the image:

• Using a file path with the source parameter.
The format, data, width and height
parameters are ignored as they are derived
from the file content.

• Using a data buffer with the data parameter.
The format parameter is mandatory, and for
raw formats (rgba or rgb), the width and
height parameters are also required.

If the size parameter is provided, the image is
scaled to fit the container while maintaining its
aspect ratio. If omitted, the image is drawn at its
original dimensions.

POST /canvas/:id/image

{
 "op": "image",
 "source": "C:\\image.png",
 "format": "",
 "data": null,
 "width": 0,
 "height": 0,
 "angle": 0,
 "position": [0, 0],
 "size": [640, 480],
 "anchor": [0, 0]
}

Attribute Type Description

op string Operation identifier.

source string Filepath. Supported formats are jpeg, png and bmp files.

format string The image data format. Could be rgba, rgb, bmp, jpeg or png.

data []byte Image data buffer.

width int Image width. Mandatory for rgba or rgb data buffer.

height int Image height. Mandatory for rgba or rgb data buffer.

See Understanding Canvas Operations section for container parameters.

5.9.4.6. Video Operation

25

Draw a live video source within the container.
The video source can be a board input
(SDI/HDMI) or another canvas.

If the size parameter is provided, the video is
scaled to fit the container while maintaining its
aspect ratio. If omitted, the video is drawn at its
original dimensions.

Note: The angle parameter is not supported for
video operations.

POST /canvas/:id/video

{
 "op": "video",
 "source": "canvas/0",
 "position": [0, 0],
 "size": [1920, 1080],
 "anchor": [0, 0]
}

Attribute Type Description

op string Operation identifier.

source string Supported sources are :board/camera/:id and canvas/:id.

See Understanding Canvas Operations section for container parameters.

5.9.5. Clear Operation

The clear operation can be used for two
purposes that can be combined:

1. Remove video sources:

• Specify a source parameter to remove a
specific video source (:board/camera/:id or
canvas/:id)

• Use source: "all" to remove all video
sources from the canvas

2. Clear a canvas area:

• Define a rectangular area using position and
size parameters

• The area will be filled with the specified
color (default: transparent black)

• Use thickness to expand the clearing area by
a given number of pixels on all sides (acts as
padding)

Default behavior: If no parameters are
provided, the entire canvas is cleared to
transparent black. All drawing operations are
removed, but video sources remain untouched.

POST /canvas/:id/clear

{
 "op": "clear",
 "source": "",
 "color": [0,0,0,0],
 "position": [200,200],
 "size": [512,256],
 "thickness": 0
}

26

Attribute Type Description

op string Operation identifier.

source string Video source to remove. Supported values: :board/camera/:id,
canvas/:id, or "all" to remove all video sources. If omitted, no
video sources are removed.

color [4]int The RGBA background color with transparency. Default [0,0,0,0]
(transparent black).

position [2]int The top-left corner coordinates of the area to clear. If omitted,
starts at [0,0].

size [2]int Dimensions of the area to clear. If omitted, clears the entire
canvas (except video sources).

thickness int Expand the clearing area by this number of pixels on all sides
(acts as padding). Default 0.

5.9.6. Single Operation Endpoint

The op endpoint is a generic endpoint that
accepts any canvas operation (init, text, line,
ellipse, rectangle, image, video, or clear). This
provides a unified way to send operations
without using operation-specific endpoints.

The operation type is determined by the op field
in the JSON payload.

POST /canvas/:id/op

{
 "op": "text",
 "text": "Hello, World!",
 "fontSize": 48,
 "position": [100, 100],
 "size": [800, 100]
}

Attribute Type Description

op string Operation type. Must be one of: init, text, line, ellipse,
rectangle, image, video, or clear. This parameter is mandatory.

… varies Additional parameters depend on the operation type. See the
corresponding operation section for details.

5.9.7. Batch Operations Endpoint

27

The ops endpoint allows sending multiple
canvas operations in a single request.
Operations are executed sequentially in the
order they appear in the array.

This is useful for:

• Atomic updates (all operations succeed or
fail together)

• Performance optimization (reduces HTTP
overhead)

• Initial canvas setup with multiple elements

Each operation in the array must include an op
field specifying its type, followed by the
operation-specific parameters.

POST /canvas/:id/ops

{
 "ops": [
 {
 "op": "init",
 "size": [1920, 1080],
 "color": [0, 0, 0, 255]
 },
 {
 "op": "rectangle",
 "position": [100, 100],
 "size": [400, 300],
 "fill": [255, 0, 0, 180]
 },
 {
 "op": "text",
 "text": "Overlay",
 "position": [100, 100],
 "size": [400, 300],
 "align": "center"
 }
]
}

Attribute Type Description

ops []object Array of operation objects. Each object must contain an op field
and the corresponding parameters for that operation type. This
parameter is mandatory.

5.9.8. Examples

This section provides practical examples demonstrating common canvas use cases. Additional
examples are available in the SDK code samples.

5.9.8.1. Example 1: Simple text banner

This example demonstrates how to create a simple text banner overlay using standard drawing
operations. The canvas is assumed to be already initialized with dimensions 1920x1080 and a
transparent background.
A semi-transparent dark banner is drawn at the bottom of the screen with white centered text. This
is commonly used for displaying information, captions, or alerts over video content.

Step 1: Draw the banner background using a
rectangle with rounded corners and
transparency.

Step 2: Add centered text on top of the banner.

28

POST lt310:/canvas/0/rectangle

{
 "op": "rectangle",
 "position": [50, 900],
 "size": [1200, 100],
 "fill": [0, 0, 0, 180],
 "rounded": 10
}

POST lt310:/canvas/0/text

{
 "op": "text",
 "text": "Hello, World!",
 "fontSize": 48,
 "color": [255, 255, 255, 255],
 "align": "center",
 "position": [50, 900],
 "size": [1200, 100]
}

These operations use the standard drawing endpoints (/rectangle and /text) which are specific to
each operation type.

▼ Code Examples

▼ ecurl

$ ecurl post lt310:/canvas/0/rectangle -d position=50,900 -d size=1200,100 -d fill=0,0,0,180 -d
rounded=10

$ ecurl post lt310:/canvas/0/text -d position=50,900 -d size=1200,100 -d text="Hello, World!" -d
fontSize=48 -d color=255,255,255,255 -d align=center

▼ GO

// Add semi-transparent background bar
body := lt.JSON{
 "position": []int{50, 900},
 "size": []int{1200, 100},
 "fill": []int{0, 0, 0, 180},
 "rounded": 10,
}
err := lt.Post("lt310:/canvas/0/rectangle", body, nil)

// Add text over the background
body = lt.JSON{
 "position": []int{50, 900},
 "size": []int{1200, 100},
 "text": "Hello, World!",
 "fontSize": 48,
 "color": []int{255, 255, 255, 255},
 "align": "center",
}
err = lt.Post("lt310:/canvas/0/text", body, nil)

▼ C++

// Add semi-transparent background bar
lt::json body = {
 {"position", {50, 900}},
 {"size", {1200, 100}},
 {"fill", {0, 0, 0, 180}},
 {"rounded", 10}
};
lt::error err = lt::Post("lt310:/canvas/0/rectangle", body, nullptr);

// Add text over the background
body = {
 {"position", {50, 900}},
 {"size", {1200, 100}},
 {"text", "Hello, World!"},
 {"fontSize", 48},

29

 {"color", {255, 255, 255, 255}},
 {"align", "center"}
};
err = lt::Post("lt310:/canvas/0/text", body, nullptr);

▼ Python

Add semi-transparent background bar
body = {
 "position": [50, 900],
 "size": [1200, 100],
 "fill": [0, 0, 0, 180],
 "rounded": 10
}
resp, err = Post("lt310:/canvas/0/rectangle", body)

Add text over the background
body = {
 "position": [50, 900],
 "size": [1200, 100],
 "text": "Hello, World!",
 "fontSize": 48,
 "color": [255, 255, 255, 255],
 "align": "center"
}
resp, err = Post("lt310:/canvas/0/text", body)

5.9.8.2. Example 2: Side-by-Side SDI Display

Create a 4K canvas displaying two sdi sources side-by-side with labels. This example uses batch
operations to set up the entire composition in a single request, including canvas initialization.

30

Step 1: Initialize a 4K canvas with a black
background.

Step 2: Add the first camera video source
on the left half of the canvas.

Step 3: Overlay a text label below the first
camera feed.

Step 4: Add the second camera video
source on the right half of the canvas.

Step 5: Overlay a text label below the
second camera feed.

POST lt310:/canvas/0/ops

{
 "ops": [
 {
 "op": "init",
 "size": [3840, 2160],
 "color": [0, 0, 0, 255],
 "framerate": 30.0
 },
 {
 "op": "video",
 "source": "0/sdi-in/0",
 "position": [0, 600],
 "size": [1920, 1080]
 },
 {
 "op": "text",
 "text": "SDI 0",
 "fontSize": 48,
 "color": [255, 255, 255, 255],
 "align": "center",
 "position": [0, 1680],
 "size": [1920, 100]
 },
 {
 "op": "video",
 "source": "0/sdi-in/1",
 "position": [1920, 600],
 "size": [1920, 1080]
 },
 {
 "op": "text",
 "text": "SDI 1",
 "fontSize": 48,
 "color": [255, 255, 255, 255],
 "align": "center",
 "position": [1920, 1680],
 "size": [1920, 100]
 }
]
}

Instead of using standard drawing endpoints, all operations are sent via the batch endpoint /ops in
a single request.

▼ Code Examples

▼ ecurl

To perform the batch operation using ecurl, a JSON file is created containing all the
operations as described above, and then sent in a single POST request.

$ ecurl post lt310:/canvas/0/ops -d @batch_ops.json

▼ GO

body := lt.JSON{
 "ops": []lt.JSON{
 {
 "op": "init",
 "size": []int{3840, 2160},
 "color": []int{0, 0, 0, 255},

31

 "framerate": 30.0,
 },
 {
 "op": "video",
 "source": "0/sdi-in/0",
 "position": []int{0, 600},
 "size": []int{1920, 1080},
 },
 {
 "op": "text",
 "text": "SDI 0",
 "fontSize": 48,
 "color": []int{255, 255, 255, 255},
 "align": "center",
 "position": []int{0, 1680},
 "size": []int{1920, 100},
 },
 {
 "op": "video",
 "source": "0/sdi-in/1",
 "position": []int{1920, 600},
 "size": []int{1920, 1080},
 },
 {
 "op": "text",
 "text": "SDI 1",
 "fontSize": 48,
 "color": []int{255, 255, 255, 255},
 "align": "center",
 "position": []int{1920, 1680},
 "size": []int{1920, 100},
 },
 },
}
err := lt.Post("lt310:/canvas/0/ops", body, nil)

▼ C++

lt::json body = {
 {"ops", {
 {
 {"op", "init"},
 {"size", {3840, 2160}},
 {"color", {0, 0, 0, 255}},
 {"framerate", 30.0}
 },
 {
 {"op", "video"},
 {"source", "0/sdi-in/0"},
 {"position", {0, 600}},
 {"size", {1920, 1080}}
 },
 {
 {"op", "text"},
 {"text", "SDI 0"},
 {"fontSize", 48},
 {"color", {255, 255, 255, 255}},
 {"align", "center"},
 {"position", {0, 1680}},
 {"size", {1920, 100}}
 },
 {
 {"op", "video"},
 {"source", "0/sdi-in/1"},
 {"position", {1920, 600}},
 {"size", {1920, 1080}}
 },
 {
 {"op", "text"},
 {"text", "SDI 1"},

32

 {"fontSize", 48},
 {"color", {255, 255, 255, 255}},
 {"align", "center"},
 {"position", {1920, 1680}},
 {"size", {1920, 100}}
 }
 }}
};
lt::error err = lt::Post("lt310:/canvas/0/ops", body, nullptr);

▼ Python

body = {
 "ops": [
 {
 "op": "init",
 "size": [3840, 2160],
 "color": [0, 0, 0, 255],
 "framerate": 30.0
 },
 {
 "op": "video",
 "source": "0/sdi-in/0",
 "position": [0, 600],
 "size": [1920, 1080]
 },
 {
 "op": "text",
 "text": "SDI 0",
 "fontSize": 48,
 "color": [255, 255, 255, 255],
 "align": "center",
 "position": [0, 1680],
 "size": [1920, 100]
 },
 {
 "op": "video",
 "source": "0/sdi-in/1",
 "position": [1920, 600],
 "size": [1920, 1080]
 },
 {
 "op": "text",
 "text": "SDI 1",
 "fontSize": 48,
 "color": [255, 255, 255, 255],
 "align": "center",
 "position": [1920, 1680],
 "size": [1920, 100]
 }
]
}
resp, err = lt.Post("lt310:/canvas/0/ops", body)

5.10. Workers
All the API processing is based on Worker objects created by the multimedia server on behalf of
clients requests. A Worker is a software entity that receives, processes, and outputs streams of
Packets. Packets encapsulate video, audio, or control data moving through the system. Workers
allow the construction of pipelines that capture data from Enciris boards, process it, or store it in
files.

The workers creation endpoints are easily recognizable by their URLs patterns:

33

Endpoint Method Description

/:url/data POST Create a data worker for the specified
resource.

/:url/file POST Create a file worker for the specified
resource.

URL parameters

• :url URL can be any valid API resource that point toward a data or a file endpoint.

There are two types of workers available:

• data workers expose media data directly to the client application for real-time analysis or
custom processing. The worker object provides packets containing shared memory buffers with
raw video or audio data, ensuring minimal latency and zero-copy transfer. Data workers are
useful for applications that require direct access to raw frames or audio samples.

• file workers record media streams into files on disk, supporting features such as file splitting
and multiple container formats. The worker object provides packets containing recording status
information instead of raw media buffers. File workers are ideal for applications that need to
store streams for later playback or archival.

The general workflow is the same for both worker types:

1. The client creates a worker by sending a POST request to the appropriate endpoint (/:url/data
or /:url/file) with the desired configuration.

2. The API responds with a redirect URL to the newly created worker object.

3. The client follows this redirect to access the worker object, which provides status information
and related packets.

The client can also stop the worker at any time by sending a POST request to the /:url/stop
endpoint.

This workflow is illustrated in the diagram below:

34

Fetch Worker

yes

Process
workerObject

no

Worker Update Thread

job done
signal

User Command Thread

no yes

User command
received ?

yes

no no

yes

Send command

Create Worker

The following sections provide further details on:

• Worker creation and configuration parameters,

• The structure of the worker object,

• The packet and shared packet object models,

• The worker lifecycle and its associated threads,

• Usage examples for common scenarios.

5.10.1. Worker Creation

Workers are created by sending a POST request to the appropriate endpoint (/:url/data for data
workers or /:url/file for file workers) along with the required parameters. If successful, the API
responds with a redirect URL that identifies the newly created worker. This URL must be used by
the client to fetch updates or to send commands to the worker.

The configuration for each worker type varies based on the media type and processing
requirements. The media are separated into distinct categories, each with its own set of parameters

35

and options.

• Audio workers focus on audio data processing and support parameters like channels, sample
rate, and bit depth.
Available media: audio/pcm, audio/wav, audio/aac.

• Image workers are designed for image data processing and include parameters such as width,
height, and pixel format.
Available media: image/yuyv, image/yuv422, image/nv12, image/rgba, image/rgb, image/jpeg,
image/png, image/bmp.

• Video workers are tailored for video data processing and support parameters like frame rate,
resolution, and codec.
Available media: video/yuyv, video/nv12, video/h264, video/mp4.

The following sections detail the parameters and usage for each worker type.

5.10.1.1. Audio Workers

This section describes the parameters used for configuring audio workers. The data worker
provides direct access to audio packets for real-time use, while the file worker records audio into a
file according to the specified parameters.
The URL used with the POST request must point to an audio source, such as :board/hdmi-
in/:id/data or :board/sdi-in/:id/data.

Common parameters

media string

Media type identifier. Supported values:
audio/pcm, audio/wav, audio/aac.

channels int

Number of audio channels. Default: 2.

samplerate int

Audio sample rate in Hz. Default: 48000.

depth int

Audio sample bit depth. Default: 16.

Additional file worker parameters

location string

The file location to save the recorded audio.
Must be a valid file path.

duration int

The duration of the recording in seconds.
Default: 0 (infinite).

splitSize int

The maximum size of each split file in bytes.
Default: 0 (unlimited, no splitting).

splitDuration int

The duration of each split file in seconds.
Default: 0 (unlimited, no splitting).

Response

Returns the location of the worker object onto the form of a redirect error.

36

Data Worker Creation File Worker Creation

POST /:url/data

request

{
 "method": "POST",
 "url": "lt310:/:url/data",
 "body": {
 "media": "audio/pcm",
 "channels": 2,
 "samplerate": 48000,
 "depth": 16
 }
}

response

{
 "location": "lt310:/client/jobs/...",
 "error": "redirect"
}

POST /:url/file

request

{
 "method": "POST",
 "url": "lt310:/:url/file",
 "body": {
 "media": "audio/pcm",
 "channels": 2,
 "samplerate": 48000,
 "depth": 16,
 "location": "path_to_directory",
 "duration": 0,
 "splitSize": 0,
 "splitDuration": 0
 }
}

response

{
 "location": "lt310:/client/jobs/...",
 "error": "redirect"
}

▼ Examples

▼ GO

// Create Data worker
err := lt.Post("lt310:/:url/data", lt.AudioDataWorker{Media: "audio/pcm"}, nil)

// Create File worker
// err := lt.Post("lt310:/:url/file", lt.AudioFileWorker{Media: "audio/wav"}, nil)

if !errors.Is(err, lt.ErrRedirect) {
 log.Fatal("worker creation failed:", err)
}
workerURL := lt.RedirectLocation(err)

▼ C++

// Create Data worker
lt::error err = lt::Post("lt310:/:url/data", lt::AudioDataWorker{ "audio/pcm" }, nullptr);

// Create File worker
// err := lt.Post("lt310:/:url/file", lt.AudioFileWorker{Media: "audio/wav"}, nil);

if (!lt::ErrorIs(err, lt::ErrRedirect)) {
 logFatal("worker creation failed:" + err);
}
string workerURL = lt::RedirectLocation(err);

▼ Python

Create Data worker
resp, err = Post("lt310:/:url/data", {'media': "audio/pcm"})

Create File worker

37

err := lt.Post("lt310:/:url/file", lt.AudioFileWorker{Media: "audio/wav"}, nil);

if not lt.ErrorIs(err, lt.ErrRedirect):
 exit(err)
workerURL = lt.RedirectLocation(err)

5.10.1.2. Image Workers

This section describes the parameters used for configuring image workers. The data worker
provides direct access to image packets, while the file worker records images into a file according to
the specified parameters.
The URL used with the POST request must point to an image source, such as :board/hdmi-in/:id
:board/sdi-in/:id or canvas/:id.

Common parameters

media string

Media type identifier. Could be image/yuyv,
image/yuv422, image/nv12, image/rgba,
image/rgb, image/jpeg, image/png and
image/bmp.

size [2]int

The image frame size. Let empty to use the
default size.

Additional file worker parameters

location string

The file location to save the recorded audio.
Must be a valid file path.

Response

Returns the location of the worker object onto the form of a redirect error.

Data Worker Creation File Worker Creation

38

POST /:url/data

request

{
 "method": "POST",
 "url": "lt310:/:url/data",
 "body": {
 "media": "image/jpeg",
 "size": [1920, 1080]
 }
}

response

{
 "location": "lt310:/client/jobs/...",
 "error": "redirect"
}

POST /:url/file

request

{
 "method": "POST",
 "url": "lt310:/:url/file",
 "body": {
 "media": "image/jpeg",
 "size": [1920, 1080],
 "location": "path_to_directory"
 }
}

response

{
 "location": "lt310:/client/jobs/...",
 "error": "redirect"
}

▼ Examples

▼ GO

// Create Data worker
err := lt.Post("lt310:/:url/data", lt.ImageDataWorker{Media: "image/jpeg"}, nil)

// Create File worker
// err := lt.Post("lt310:/:url/file", lt.ImageFileWorker{Media: "image/jpeg"}, nil)

if !errors.Is(err, lt.ErrRedirect) {
 log.Fatal("worker creation failed:", err)
}
workerURL := lt.RedirectLocation(err)

▼ C++

// Create Data worker
lt::error err = lt::Post("lt310:/:url/data", lt::ImageDataWorker{ "image/jpeg" }, nullptr);

// Create File worker
// lt::error err = lt::Post("lt310:/:url/file", lt::ImageFileWorker{ "image/jpeg" }, nullptr);

if (!lt::ErrorIs(err, lt::ErrRedirect)) {
 logFatal("worker creation failed:" + err);
}
string workerURL = lt::RedirectLocation(err);

▼ Python

Create Data worker
resp, err = Post("lt310:/:url/data", {'media': "image/jpeg"})

Create File worker
// resp, err = Post("lt310:/:url/file", {'media': "image/jpeg"})

if not lt.ErrorIs(err, lt.ErrRedirect):
 exit(err)
workerURL = lt.RedirectLocation(err)

39

5.10.1.3. Video Workers

This section describes the parameters used for configuring video workers. The data worker
provides direct access to video packets for real-time use, while the file worker records video into a
file according to the specified parameters.
The URL used with the POST request must point to a video source, such as :board/hdmi-in/:id,
:board/sdi-in/:id or canvas/:id.

Common parameters

media string

Media type identifier. Could be video/yuyv,
video/nv12, video/h264, video/mp4.

size [2]int

The image frame size. Let empty to use the
default size.

framerate float

The video frame rate. Let empty to use the
default framerate.

Additional file worker parameters

location string

The file location to save the recorded video.
Must be a valid file path.

duration int

The duration of the recording in seconds.
Default 0 (infinite).

splitSize int

The maximum size of each split file in bytes.
Default: 0 (unlimited, no splitting).

splitDuration int

The duration of each split file in seconds.
Default: 0 (unlimited, no splitting).

40

Extra string

Video encoder configuration parameters that control the encoding process:

• hw - Hardware encoder to use: "qsv" (Intel), "nvenc" (NVIDIA), or "amf" (AMD)

• bitrate - Target bitrate in bits per second (e.g., 5000000 for 5 Mbps)

• quality - Quality/compression level (19-24, lower values = higher quality)

• gop - Group of Pictures - keyframe interval in frames

• codec - Video codec to use: "h264" or "hevc"

• preset - Preset for the encoder (e.g., "veryfast", "faster", "fast", "medium", "slow",
`"slower", "veryslow")

NOTE
Use either bitrate or quality for rate control, but not both simultaneously.
Using bitrate creates a constant bitrate encoding, while quality creates
variable bitrate encoding with consistent visual quality.

Response

Returns the location of the worker object onto the form of a redirect error.

Data Worker Creation File Worker Creation

41

POST /:url/data

request

{
 "method": "POST",
 "url": "lt310:/:url/data",
 "body": {
 "media": "video/nv12",
 "size": [1920, 1080],
 "framerate": 30
 }
}

response

{
 "location": "lt310:/client/jobs/...",
 "error": "redirect"
}

POST /:url/file

request

{
 "method": "POST",
 "url": "lt310:/:url/file",
 "body": {
 "media": "video/mp4",
 "size": [1920, 1080],
 "framerate": 30,
 "location": "path_to_directory",
 "duration": 0,
 "splitSize": 0,
 "splitDuration": 0,
 "extra": {
 "hw": "",
 "bitrate": 0,
 "quality": 0,
 "gop": 0,
 "codec": "",
 "preset": ""
 }
 }
}

response

{
 "location": "lt310:/client/jobs/...",
 "error": "redirect"
}

▼ Examples

42

▼ GO

// Create Data worker
err := lt.Post("lt310:/:url/data", lt.VideoDataWorker{Media: "video/nv12"}, nil)

// Create File worker
// err := lt.Post("lt310:/:url/nv12", lt.VideoFileWorker{Media: "video/nv12"}, nil)

if !errors.Is(err, lt.ErrRedirect) {
 log.Fatal("worker creation failed:", err)
}
workerURL := lt.RedirectLocation(err)

▼ C++

// Create Data worker
lt::error err = lt::Post("lt310:/:url/data", lt::VideoDataWorker{ "video/nv12" }, nullptr);

// Create File worker
// lt::error err = lt::Post("lt310:/:url/file", lt::VideoFileWorker{ "video/nv12" }, nullptr);

if (!lt::ErrorIs(err, lt::ErrRedirect)) {
 logFatal("worker creation failed:" + err);
}
string workerURL = lt::RedirectLocation(err);

▼ Python

Create Data worker
resp, err = Post("lt310:/:url/data", {'media': "video/nv12"})

Create File worker
// resp, err = Post("lt310:/:url/file", {'media': "video/nv12"})

if not lt.ErrorIs(err, lt.ErrRedirect):
 exit(err)
workerURL = lt.RedirectLocation(err)

5.10.2. Worker Object

The Worker object is the result of a GET request onto a worker endpoint. It contains the worker
status, data packets and metadata. A Worker might process one or multiples tracks and the SDK
provides helpers functions to automatically parse the worker into a comprehensive structure with
the contained audio and video packets.

43

name string

In case of file workers, the name of the
output file. Otherwise, it is empty.

location string

In case of file workers, the location of the
output file. Otherwise, it is empty.

start int64

Unix timestamp at which the worker started.

duration int64

Elapsed time since the worker started.

size int

Quantity of byte processed since the segment
started.

status string

Worker current status (running, paused or
completed).

packets map[int]packet

Packets maps packet or shared packet of
video, audio or text data samples and/or
metadata samples.

Worker object

{
 "name": "",
 "location": "",
 "start": 1644248369455566,
 "duration": 16667,
 "size": 4147200,
 "status": "completed",
 "packets": {
 "0": {
 "... packet object #0 ..."
 }
 }
}

5.10.3. Packet and SharedPacket Objects

Packets are the fundamental units delivered by a worker. They may contain raw media data (PCM
audio samples, raw video frames), or status information (e.g., file recording progress).
Two packet models exist:

• Packet: contains metadata and inline media data.

• SharedPacket: references a buffer in shared memory for zero-copy access to larger media
payloads.

Clients must release packets after processing them to free system resources.

44

Common parameters

track int

The track ID of the packet if the worker
process multiple tracks.

type string

The packet type and format.

signal string

`none` (not found), or `locked` (ready to
use)

timestamp int64

Unix timestamp at which the packet has been
sampled.

meta JSON

The metadata fields for audio and video. See
audio and video metadata objects.

Packet object specific parameters

data []byte

The packet plain data buffer.

SharedPacket object specific parameters

ref string

The shared memory reference to be deleted
once the data has been used.

client string

The client id which has made the request.

handle string

The handle that allows to access the shared
memory.

size int

The shared memory block total capacity.

len int

The shared buffer length inside the shared
memory block.

Packet object

{
 "track": 0,
 "type": "video/nv12",
 "signal": "locked",
 "timestamp": 1695815814430318,
 "meta": {
 "size": [1920, 1080],
 "framerate": 30,
 "interlaced": false,
 "keyframe": true
 },
 "data": "bytes_array",
}

SharedPacket object

{
 "track": 0,
 "type": "video/nv12",
 "signal": "locked",
 "timestamp": 1695815814430318,
 "meta": {
 "size": [1920, 1080],
 "framerate": 30,
 "interlaced": false,
 "keyframe": true
 },
 "len": 16588800,
 "ref": "{lt}:/client/ref/...",
 "client": "client_id",
 "handle": "shared_memory_handle",
 "size": 1275592704,
}

To simplify integration, the SDK provides a helper function that automatically parses each packet

45

type into a unified structure, making it easier for developers to work with the data. This approach
streamlines packet handling and ensures consistency across different worker types and media
formats. The new packet object model maintains common parameters while standardizing how the
data sections are represented, as described below.

data []byte

If the packet is a Packet object, this field
contains the packet data. If the packet is a
SharedPacket object, the shared memory
content is loaded into this field.

ref string

If the packet is a Packet object, this field is
empty. If the packet is a SharedPacket object,
this field contains the shared memory
reference, which indicates to the user that
the data is loaded from shared memory.

SDK Packet Object

{
 "track": 0,
 "type": "video/nv12",
 "signal": "locked",
 "timestamp": 1695815814430318,
 "meta": {
 "size": [1920, 1080],
 "framerate": 30,
 "interlaced": false,
 "keyframe": true
 },
 "ref": "{lt}:/client/ref/...",
 "client": "q5jrzd2OIQuxCq1IJWICuA",
 "handle": "{lt}_global_24",
}

5.10.3.1. Metadata

The content of metadata structure present in packet object or shared packet object depends on the
packet type. It exposes some fields that are specific to the type of media being processed. The
following sections describe the fields for audio, image and video metadata.

Audio Metadata

channels int

The number of channels.

samplerate int

The number of samples per second.

depth int

The number of bits per sample.

Samples int

The number of samples contained into the
buffer.

Audio metadata

{
 "channels": 2,
 "samplerate": 48000,
 "depth": 16,
 "samples": 800,
}

Image Metadata

46

size [2]int

The image frame size.
Image metadata

{
 "size": [1920, 1080],
}

Video Metadata

size [2]int

The video frame size.

framerate float

The number of video frame per second.

interlaced bool

Is the frame interlaced.

keyframe bool

Is the frame intra coded.

Video metadata

{
 "size": [1920, 1080],
 "framerate": 60,
 "interlaced": false,
 "keyframe": true
}

5.10.4. Worker lifecycle

The worker lifecycle consists of three main stages: creation, processing, and termination. The
following diagram provides a detailed view of this workflow:

47

If there is no errors,
the API provide a redirect
workerURL to access it

yes

no
Valid command ?

no yes

User command
received ?

yes

no
Worker job done ?

yes

no
cmd == stop ?

Process worker
information

Init n = 0

no

yes

n < number of
packets ?

Process Packet

n++

yes

no

No error ?

no

yes

error == EOF ?

Worker Update Thread

Communication
error

User Command Thread

The first step is to create the worker by sending a POST request to the appropriate endpoint. If the
request is successful, the response contains the location of the created worker (workerURL), which
can be used to interact with the worker during its lifecycle.

To manage this interaction, two client-side threads are typically used:

• Worker Update Thread: continuously fetches the worker object from the server, updating its
status and packets. The loop continues until an EOF error is returned, indicating that the worker
has completed its task.

• User Command Thread (optional): processes user commands and forwards them to the
worker. Typical commands include stop, pause, and start. Sending such a command will
eventually lead to an EOF being returned to the update thread, signaling the end of the worker.

5.10.4.1. Worker Update Thread

This thread is responsible for regularly fetching the worker object from the server, processing the
returned packets and worker status, and detecting the EndOfStream (EOF) condition. It usually runs
concurrently with the main application logic.

48

Step by step:

1. Fetch worker update

Perform a GET request on the workerURL to
retrieve the latest worker object.

2. Check for errors

• If EOF is returned by the server, signal job
completion and exit.

• If another error occurs, handle it
appropriately (log, retry, etc.).

• Otherwise, parse the worker object.

3. Process worker information

Extract status, progress, and available data
packets.
Note: A completed status may indicate a
finished file segment depending on the
worker type.

4. Process worker packets

Loop over packets and process each
according to its type.
Tip: Process asynchronously to avoid
blocking the update loop. Release each packet
after use with Close().

5. Repeat

Return to step 1 until the server returns EOF.

Process worker
information

Init n = 0

no

yes

n < number of packets
?

Process Packet

n++

yes

no

No error ?

no

yes

error == EOF ?

5.10.4.2. User Command Thread

This thread handles user commands and sends them to the worker. It is optional and may not be
needed in all applications. Supported commands are: stop, pause, and start.

49

Step by step:

1. Wait for command

Listen non-blocking for stop, pause, or start.

2. Verify and send

Ensure the command is valid and POST it to
workerURL.

3. Check for completion

Exit the loop if the stop command is sent, or
if a job-done signal is received from the
Worker Update Thread.

4. Repeat

Return to step 1 until termination.

yes

no
Valid command ?

no yes

User command
received ?

yes

no
Worker job done ?

yes

no
cmd == stop ?

5.10.5. Example 1: fetching audio data with a data worker

This example demonstrates how to create an audio data worker, fetch audio packets, and process
them using the SDK. The audio data can then be played back or analyzed as needed.
Only the Worker Update Thread is used in this example, since the User Command Thread is
optional.

Creating an audio data worker
Send the following request to create a data worker for fetching audio from 0/hdmi-in/0 input:

request

{
 "method": "POST",
 "url": "lt310:/0/hdmi-in/0/data",
 "body": {
 "media": "audio/pcm",
 "source": "0/hdmi-in/0",
 "channels": 2,
 "samplerate": 48000,
 "depth": 16
 }
}

If successful, the server responds with a redirect containing the worker location (workerURL):

50

response (redirect)

redirect: lt310:/client/jobs/VCW90ecK90GwE

The user can now start the Worker Update Thread to fetch and process audio packets.

Fetching worker updates
To fetch updates, send a GET request to the worker URL:

request

{
 "method": "GET",
 "url": "lt310:/client/jobs/VCW90ecK90GwE"
}

Possible outcomes:

• null: request successful, worker object returned.

• EOF: special error returned by the server indicating EndOfStream - no more packets will be
produced.

• Any other value: an error occurred while fetching the update.

Processing the worker object

A successful response contains the worker object, including status, packets, and metadata.
Example parsed by the SDK:

51

Worker Object with SDK Packet
Object

{
 "name": "",
 "location": "",
 "duration": 595015,
 "length": 114240,
 "start": 1758272241958140,
 "status": "running",
 "packets": [
 {
 "Track": 0,
 "Media": "audio/pcm",
 "Signal": "locked",
 "Timestamp": 1758616846077989,
 "Ref": "",
 "Data": "AAAAAAAAA...",
 "Meta": {
 "channels": 2,
 "samplerate": 48000,
 "depth": 16,
 "samples": 1020
 }
 }
]
}

Notes:

• "name" and "location" are empty (data
worker).

• Each packet contains audio data and
metadata (channels, sample rate, bit depth,
sample count).

• "ref" is empty because this is a Packet object,
not a SharedPacket.

• "data" contains the raw audio samples in
bytes.

Release each packet with Close() to free resources. Loop back to fetch the next update until the
server returns an EOF error.

End of Stream handling

A data worker runs indefinitely until explicitly stopped. To stop it, the client should:

• Send a stop command via the User Command Thread (recommended).

• Or terminate the application directly (not recommended, may leave resources inconsistent).

After receiving stop, the worker finishes processing any remaining data. The client must continue
fetching updates until the server returns an EOF error, which signals that the worker has
terminated.

5.10.6. Example 2: recording a video stream with a file worker

This example demonstrates how to create a video file worker to record a video stream from an
input source and process worker updates.
Only the Worker Update Thread is implemented in this example, as the User Command Thread is
optional.

Creating a video file worker
Send the following request to create a file worker for recording video from 0/sdi-in/0 input with
this configuration:

52

• recording format: video/mp4

• save files to C:\Users\A\Videos

• record 10 seconds, splitting every 5 seconds

• other parameters are left to default values.

request

{
 "Method": "POST",
 "URL": "lt310:/0/sdi-in/0/file",
 "Body": {
 "media": "video/mp4",
 "location": "C:\\Users\\A\\Videos",
 "duration": 10,
 "splitSize": 0,
 "splitDuration": 5,
 "size": [
 0,
 0
],
 "framerate": 0,
 "extra": {
 "hw": "",
 "bitrate": 0,
 "quality": 0,
 "gop": 0,
 "codec": "",
 "preset": ""
 }
 }
}

If successful, the server responds with a redirect containing the worker location (workerURL):

response (redirect)

redirect: lt310:/client/jobs/NBCgXxNEOsc

Recording starts immediately. The client can now start the Worker Update Thread to fetch and
process packets.

Fetching worker updates
To fetch updates, send a GET request to the worker URL:

request

{
 "method": "GET",
 "url": "lt310:/client/jobs/NBCgXxNEOsc"
}

Possible outcomes:

• null: request successful, worker object returned.

• EOF: special error returned by the server indicating EndOfStream - no more packets will be

53

produced.

• Any other value: an error occurred while fetching the update.

Processing the worker object

Worker Object with SDK Packet
Object

{
 "name": "VID_20250919_172235_449.mp4",
 "location": "C:\\Users\\A\\Videos",
 "start": 1758295355449982,
 "duration": 640004,
 "length": 555098,
 "status": "running",
 "packets": [
 {
 "Track": 0,
 "Media": "video/h264",
 "Signal": "locked",
 "Timestamp": 1758295356049986,
 "Ref": "",
 "Data": null,
 "Meta": {
 "size": [
 1920,
 1080
],
 "framerate": 60,
 "interlaced": false,
 "keyframe": false
 }
 }
]
}

Notes:

• "name" and "location" indicate the name and
location of the recorded file. When a split
occurs, the name will change to reflect the
new file (e.g., VID_20250919_172235_450.mp4).

• "status" shows running while recording. It
changes to completed when the recording
duration is reached or just before a split.

• Each packet (e.g., track ID "0") contains video
metadata and encoding information such as
frame size, framerate, interlacing status, and
keyframe status.

• "ref" and "data" are empty because the
FileWorker provides metadata only, not
direct video data.

Release each packet with Close() and loop back to fetch the next update until the server returns
EOF.

End of Stream handling

This file worker runs for a specified duration and automatically completes the recording.
The client should continue fetching updates until the server returns an EOF error, indicating that no
more packets will be produced and the worker is terminated. On the final worker object, "status" is
typically completed, and "duration" reflects the total recording time.

54

Chapter 6. Cheatsheet
 Agent

Endpoint Method Description

/ GET Retrieve the current agent
information.

 Board

Endpoint Method Description

/:board GET Retrieve information about the board
installed in the host system.

 HDMI Input

Endpoint Method Description

/:board/hdmi-in/:id GET Retrieve the current HDMI Input
information.

/:board/hdmi-in/:id/data POST Retrieve raw data from the HDMI
Input.

/:board/hdmi-in/:id/file POST Retrieve a file from the HDMI Input.

/:board/hdmi-in/:id/edid GET, POST Retrieve or set the EDID data for the
HDMI Input.

 SDI Input

Endpoint Method Description

/:board/sdi-in/:id GET Retrieve the current SDI Input
information.

/:board/sdi-in/:id/data POST Retrieve raw data from the SDI Input.

/:board/sdi-in/:id/file POST Retrieve a file from the SDI Input.

 HDMI Output

Endpoint Method Description

/:board/hdmi-out/:id GET, POST Retrieve or configure the specified
hdmi-out.

 Canvas

Endpoint Method Description

/canvas/:id GET canvas :id configuration.

/canvas/:id/data POST Data stream

/canvas/:id/file POST File recording

55

Endpoint Method Description

/canvas/:id/init POST Initialize the canvas.

/canvas/:id/text POST Draw text on the canvas.

/canvas/:id/line POST Draw a line on the canvas.

/canvas/:id/ellipse POST Draw an ellipse on the canvas.

/canvas/:id/rectangle POST Draw a rectangle on the canvas.

/canvas/:id/image POST Put an image on the canvas.

/canvas/:id/video POST Put a video on the canvas.

/canvas/:id/clear POST Clear a canvas area or a source.

/canvas/:id/op POST Perform a single draw operation on
the canvas.

/canvas/:id/ops POST Perform multiple draw operations on
the canvas.

56

Chapter 7. Changelog
1.4.0 (28/11/2025):
- Add NV12 native support
- Add audio recording
- Add 2K DCI resolution support
- Improve audio acquisition
- Improve QoS
- Improve HDMI input
- Improve SDK clients & examples
- Update documentation

1.3.1 (25/08/2025):
- Add audio/video player example (Go & C++)
- Improve audio fetching

1.3.0 (29/04/2025):
- Add HEVC codec options
- Add interlace support
- Add python client
- Add video encoder parameters
- Improve agent reliability
- Improve canvas
- Improve HDMI output
- Improve overlay performance
- Minor fixes
- Hardware acceleration on Linux currently works only with Intel QSV (Quick Sync Video)

1.2.0 (18/12/2024):
- Improve DirectShow filters
- Update sdk
- Change boards EDID
- Minor fixes

1.1.0 (27/09/2024):
- Add DirectShow audio

1.0.0 (10/07/2024):
- First official release

57

	LT310 API: The programmer guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Installation
	2.1. Windows
	2.2. Linux
	2.3. SDK
	2.4. Tools
	2.5. lt310agent Controls
	2.6. Board Firmware

	Chapter 3. ecurl (CLI)
	3.1. GET command
	3.2. POST command
	3.3. DELETE Command
	3.4. PLAY Command
	3.5. REC Command

	Chapter 4. ecap (GUI)
	Chapter 5. API Description
	5.1. Endpoint Structure
	5.2. Request and Response Format
	5.2.1. Retrieve parameters (GET)
	5.2.2. Update parameters (POST)
	5.2.3. Error Handling

	5.3. Audio/Video structures
	5.3.1. Audio object
	5.3.2. Video object

	5.4. Agent
	5.4.1. Agent Object
	5.4.2. Agent Configuration File

	5.5. Board
	5.5.1. Board Object

	5.6. HDMI Input
	5.6.1. HDMI Input Object
	5.6.2. EDID Object

	5.7. SDI Input
	5.7.1. SDI Input Object

	5.8. HDMI Output
	5.8.1. HDMI Output Object

	5.9. Canvas
	5.9.1. Canvas Object
	5.9.2. Understanding Canvas Operations
	5.9.3. Initialize Canvas
	5.9.4. Drawing Operations
	5.9.5. Clear Operation
	5.9.6. Single Operation Endpoint
	5.9.7. Batch Operations Endpoint
	5.9.8. Examples

	5.10. Workers
	5.10.1. Worker Creation
	5.10.2. Worker Object
	5.10.3. Packet and SharedPacket Objects
	5.10.4. Worker lifecycle
	5.10.5. Example 1: fetching audio data with a data worker
	5.10.6. Example 2: recording a video stream with a file worker

	Chapter 6. Cheatsheet
	Chapter 7. Changelog

