
CV40 API
The programmer guide

Enciris Technologies

Version 1.3.3, 17/09/2025

Table of Contents
1. Introduction. 1

2. Installation . 2

2.1. Windows . 2

2.2. Linux . 2

2.3. SDK . 3

2.4. Tools . 3

2.5. cv40agent Controls . 3

2.6. Board Firmware . 4

3. ecurl (CLI). 5

3.1. GET command . 5

3.2. POST command . 5

3.3. DELETE Command . 6

3.4. PLAY Command. 6

3.5. REC Command . 6

4. ecam (GUI) . 8

5. API description . 9

5.1. Agent . 9

5.1.1. Agent Configuration File . 9

5.1.2. Agent Object . 10

5.1.3. View cv40agent Information . 10

5.2. Board . 11

5.2.1. Board Object. 11

5.2.2. View Board Information . 11

5.2.3. Button Object . 12

5.2.4. View Button State . 13

5.2.5. Buttons Object . 14

5.2.6. View Buttons State . 14

5.3. Audio/Video structure . 15

5.3.1. Audio object . 15

5.3.2. Video object . 15

5.4. Camera . 16

5.4.1. Camera Object . 17

5.4.2. View Camera Status . 18

5.4.3. White Object. 20

5.4.4. View White Settings . 20

5.4.5. Update White Settings . 21

5.4.6. Colors Object . 22

5.4.7. View Colors Settings . 22

5.4.8. Update Colors Settings . 23

5.4.9. Exposure Object . 24

5.4.10. View Exposure Settings . 26

5.4.11. Update Exposure Settings . 27

5.4.12. Visuals Object . 28

5.4.13. View Visuals Settings . 29

5.4.14. Update Visuals Settings . 30

5.4.15. Button Object . 31

5.4.16. View Button State . 32

5.4.17. Buttons Object . 33

5.4.18. View Buttons State . 33

5.5. HDMI Output . 34

5.5.1. HDMI Output Object. 34

5.5.2. View HDMI Output Status . 35

5.5.3. Configure HDMI Output . 37

5.6. SDI Output . 38

5.6.1. SDI Output Object . 38

5.6.2. View SDI Output Status . 40

5.6.3. Configure SDI Output . 42

5.7. Canvas . 43

5.7.1. Canvas Object. 45

5.7.2. View Canvas Status. 45

5.7.3. Delete Operation . 46

5.7.4. Init Operation. 47

5.7.5. Text Operation . 48

5.7.6. Line Operation. 50

5.7.7. Ellipse Operation. 52

5.7.8. Rectangle Operation. 54

5.7.9. Image Operation . 56

5.7.10. Video Operation . 58

5.7.11. Clear Operation . 59

5.7.12. Batch Operations. 61

5.8. Client . 61

5.8.1. Fetch Worker Updates . 62

5.8.2. Release Referenced Memory . 62

5.9. Workers. 63

5.9.1. Worker Creation . 64

5.9.2. Worker Object . 72

5.9.3. Packet Object . 73

5.9.4. Data Worker Workflow . 76

5.9.5. File Worker Workflow . 78

6. Cheatsheet . 80

7. Changelog. 82

Chapter 1. Introduction
The LT API is built around the REST architecture (Representational State Transfer). REST defines a
structured approach for exposing system functionalities via a consistent interface.

A REST API is typically accessed using predefined URLs, which represent various resources
returned as JSON objects. These resources support standard methods such as GET , POST , and DELETE .

The LT API requests are processed by a host service called cv40agent, which utilizes standard OS
mechanisms such as IPC, SG-DMA, and shared memory. This ensures minimal latency when
handling API requests. To optimize performance, video and audio data are shared among
consumers using memory segments, allowing large data buffers and concurrent access.

With LT boards designed to be seen as hardware-as-a-service approach, the LT API abstracts
hardware-specific implementations behind a unified API. This allows users to focus on core
functionalities such as capturing, playing, recording, and streaming audio/video data.

The LT API is accessible through various clients, including the ecurl command line interface (CLI)
and the ecam graphical user interface (GUI). The API can also be accessed directly through C++,
Python, DirectShow, V4L2, NamedPipe, and UART.

 Clients REST LT API LT Agent LT Driver
 ============= ==========
 <-- | | | | |
ecurl (CLI) <-- | | | | |
ecap (GUI) <-- | | Controls | | |
 <-- | | Status | | |
 <-- | | Logs | | |
GO <-- | | | | | <--> LT board #0
C++ <-- | | | | |
Python <-- | | | | PCIe |
 <-- | --> |-----------| <--> | Driver |
 <-- | | | | (DMA) |
Directshow <-- | | | | |
V4L2 <-- | | Data | | | <--> LT board #1
 <-- | | Server | | |
 <-- | | | | |
NamedPipe <-- | | | | |
UART <-- | |-----------| | |
 <-- | | Firmwares | | |
 ============= ==========

1

https://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 2. Installation

2.1. Windows
Download and run the latest cv40install_x.x.x.exe to install the cv40 family drivers, tools and
services. If necessary the previous version will be uninstalled.

Once installed, the cv40agent service will be started automatically and will be (re)started
automatically with each system (re)boot.

The cv40agent can be controlled using the Windows Services Manager or the command line. For
more details, see [control_service].

The LT boards plugged into the host should appear in the Windows Device Manager under the
Sound, video and game controllers.

Directshow

All the boards inputs are accessible through directshow filters, and then are available in any directshow
compatible application. The directshow filters are managed by the cv40agent service, so you can use them only
if the service is running.

NOTE
To uninstall the cv40 family drivers, tools and services, run the installer and choose
"Remove" or use "Apps & features" menu.

2.2. Linux
Download and extract the latest cv40install_x.x.x.tar.gz, then run the cv40install.sh script to
install the cv40 family drivers, tools and services. If necessary, the previous version will be
uninstalled.

Upon successful installation, the cv40agent daemon will start automatically and will also
(re)started with each system (re)boot. If the installation fails, contact us and check the
cv40install.log file for details.

The cv40agent can be controlled using the command line. For more details, see [control_service].

V4L2

All the boards inputs are accessible through V4L2 drivers, and then are available in any V4L2/GStreamer
compatible application. The V4L2 drivers are managed by the cv40agent service, so you can use them only if
the service is running.

2

NOTE
To uninstall the cv40 family drivers, tools and services, run cv40_uninstall.sh from
the installation directory.

2.3. SDK
Download the latest cv40sdk_x.x.x.zip or cv40sdk_x.x.x.tar.gz archive and extract it anywhere
you want. The SDK contains the API documentation, the API libraries and examples for the
following languages Go, C++ and Python.

Please navigate through the examples to learn how to program the API.

You can also create scripts using the ecurl command-line tool. For more details, see [ecurl].

2.4. Tools
Two tools are installed along with the cv40agent service:

• ecurl - a command-line tool to send REST API requests to the cv40agent.

• ecam - a graphical user interface to control and/or test LT boards.

By default, the service and tools are added to the PATH environment variable, allowing you to use
them from any command line.

2.5. cv40agent Controls
To access the LT API, ensure that the cv40agent is installed and running on your host system.

You can use the following commands, which require administrative privileges, to control the
cv40agent.

Start the cv40agent

$ cv40agent start

Stop the cv40agent

$ cv40agent stop

Check the cv40agent and boards firmware version

$ cv40agent version

Check the cv40agent status

$ cv40agent status

3

2.6. Board Firmware
If the boards installed in the host require a firmware update, the cv40agent service will
automatically update them when the service starts. This process may take up to 2 minutes,
depending on the board type. The service will be unavailable until the update is completed.

Please use the command below if you want to check the firmware version of the boards.

Check the cv40agent and boards firmware version

$ cv40agent version

It is also possible to manually update the board firmware.

Update the boards firmware

$ cv40agent update

NOTE To update the board firmware, the cv40agent must be stopped.

4

Chapter 3. ecurl (CLI)
The ecurl program is a developer tool to help you make requests on the LT API directly from your
terminal. The tool is deployed along with the cv40agent at the installation stage. The tool has been
developed with our SDK and is available for both Linux and Windows platforms.

You can use the ecurl CLI to:

• Create, retrieve, update or delete LT API objects.

• Play and record any video or audio resources.

• Use the multi-channel feature of the LT boards.

• Control and test the installed LT boards.

NOTE The cv40agent must be running otherwise ecurl will not work.

3.1. GET command

$ ecurl get <url>

Send a GET request to retrieve a specific API object identified by the <url>.

▼ Examples

Retrieve information about the cv40 family agent

$ ecurl get cv40:/

Retrieve informaton from cv40 board located at index 0

$ ecurl get cv40:/0

Make a JPEG capture

$ ecurl get cv40:/0/{in}/0/file -d type=image/jpeg

3.2. POST command

$ ecurl post <url> [-d @file.json] [-d field=value] [-d data=@file.bin]

Create or modify the resource designated by the <url>.
Arguments may be added to the request with the -d optional flags. It is possible to use a file content
as input by preceding the filename with the @ character. By preceding the filename with the $
charater, relative path will be translated to the absolute full path.

5

▼ Examples

Create a virtual video input from a mp4 file

$ ecurl post cv40:/canvas/0/init -d source=$video.mp4

Load a custom HDMI-IN Edid

$ ecurl post cv40:/0/hdmi-in/0/edid -d data=@custom.edid

3.3. DELETE Command

$ ecurl delete <url>

Delete or reset the resource pointed by the <url>.

▼ Examples

Unplug virtual video input

$ ecurl delete cv40:/canvas/0

3.4. PLAY Command

$ ecurl play <url> [-d]

Play video or audio source until Ctrl  +  c is pressed.
Arguments may be added to the request with the -d optional flags.

▼ Examples

Live display of camera video

$ ecurl play cv40:/0/camera/0

3.5. REC Command

$ ecurl rec <url> [-d]

Record video or audio source until Ctrl  +  c is pressed.
Arguments may be added to the request with the -d optional flags.

6

▼ Examples

Record camera video into a mp4 file

$ ecurl rec cv40:/0/camera/0/file -d media=video/mp4

Record camera video using NVENC hardware encoder and hevc codec

$ ecurl rec cv40:/0/camera/0 -d media=video/mp4 -d extra.hw=nvenc -d extra.codec=hevc

7

Chapter 4. ecam (GUI)
The ecam program is a simple graphical user interface developed with our SDK and is available for
Linux and Windows platforms.

You can use the ecam application to:

• Play and record the camera input. You can
also control HDMI and SDI output
configuration and test the overlay feature.

• Switch between automatic and manual
exposure, and adjust the exposure settings.

• Adjust the colors settings (HSBC and gamma
correction), perform white balance or
modify the color temperature.

• Control the visuals settings like edge
enhancement, noise reduction.

NOTE The cv40agent has to be running otherwise ecam will not work.

8

Chapter 5. API description
An API endpoint is a URL where the API processes requests for a specific resource. Endpoints are
accessed via URLs using the syntax scheme:/path. It consists of:

• A non-empty scheme component followed by a colon cv40:.

• A path component made up of path segments separated by slashes /.

For clarity, the URLs endpoints are presented in tables where:

• The scheme cv40: is omitted.

• Tables vertical separators replace slashes /.

• Each method listed in a cell represents an available operation for that path.

• An empty cell means that no method exists for that path.

5.1. Agent
The agent endpoint allows to retrieve the cv40agent software version.

/

GET

GET /

5.1.1. Agent Configuration File

The agent can be configured using a optional configuration file. You can place the cv40agent.config
file in the same directory as the application executable. Configuration options:

Option Description

WD Working directory for the agent (default: current working directory)

numCanvases Number of canvas objects to create (default 4)

noVideoSignal Settings for when no video signal is detected (default: gray background
with "NO SIGNAL" text)

dshowFilters Enable/disable DirectShow filters (default: true)

v4l2Filters Enable/disable V4l2 filters (default: false)

devMode Enable/disable development mode (default: false)

This file is included in the agent folder. The configuration file is optional and can be omitted if not
needed.

9

https://en.wikipedia.org/wiki/URL

5.1.2. Agent Object

revision string

Commit hash.

time string

Commit timestamp.

version string

Commit tagged version.

Agent object

{
 "revision": "...hash...",
 "time": "...time...",
 "version": "1.3.3"
}

5.1.3. View cv40agent Information

Retrieves the cv40agent software version.

Parameters

None.

Response

Returns the agent object if the request
succeeded.

GET /

request

{
 "method": "GET",
 "url": "cv40:/",
 "body": null
}

response

{
 "revision": "...hash...",
 "time": "...time...",
 "version": "1.3.3"
}

▼ Examples

▼ ecurl

$ ecurl get cv40:/

▼ GO

var response lt.Agent // struct to store the response
err := lt.Get("cv40:/", &response)

▼ C++

lt::Agent response; // struct to store the response
lt::error err = lt::Get("cv40:/", response);

▼ Python

response, err = Get("cv40:/")

10

5.2. Board
The board endpoint allows to retrieve information on boards installed into the host. These
information are described in the board object section.

:board

GET

buttons

GET

:pin

GET

GET /:board

GET /:board/buttons/:pin

board

Device position into the host [0 .. 1].

pin

Button position [0 .. 4].

5.2.1. Board Object

model string

Board model identifier. If no devices is found,
the value is left empty.

sn int

Board serial number.

cpu uint

Board CPU datecode.

fpga uint

Board FPGA datecode.

bridge uint

Board bridge datecode.

Board object

{
 "model" : "cv42",
 "sn" : 64000000,
 "cpu" : 0,
 "fpga" : 0,
 "bridge" : 0
}

5.2.2. View Board Information

To retrieve the board information at a given position, send a GET request to the /:board endpoint.

11

Parameters

None.

Response

Returns the board object if the request
succeeded.

GET /:board

request

{
 "method": "GET",
 "url": "cv40:/0",
 "body": null
}

response

{
 "model" : "cv42",
 "sn" : 64000000,
 "cpu" : 0,
 "fpga" : 0,
 "bridge" : 0
}

▼ Examples

▼ ecurl

$ ecurl get cv40:/0

▼ GO

var response lt.Board // struct to store the response
err := lt.Get("cv40:/0", &response)

▼ C++

lt::Board response; // object to store the response
lt::error err = lt::Get("cv40:/0", response);

▼ Python

response, err = Get("cv40:/0")

5.2.3. Button Object

The button object allows to capture the button pin state.

12

description string

Description of the button pin.

pressed bool

Is the button currently 'pressed'.

pressedCount int

Number of times the button has been pressed
since the last 'release' event.

timestamp int64

The unix timestamp of the last 'press' or
'release' event in microseconds.

Button object

{
 "description": "0/buttons/0",
 "pressed": false,
 "pressedCount": 0,
 "timestamp": 0
}

5.2.4. View Button State

To retrieve the button status, send a GET request to the button/:pin endpoint.

Parameters

None.

Response

Returns the button object if the request
succeeded.

GET /0/buttons/:pin

request

{
 "method": "GET",
 "url": "cv40:/0/buttons/0",
 "body": null
}

response

{
 "description": "0/buttons/0",
 "pressed": false,
 "pressedCount": 0,
 "timestamp": 0
}

▼ Examples

▼ ecurl

$ ecurl get cv40:/0/buttons/0

▼ golang

var response lt.Button // struct to store the response
err := lt.Get("cv40:/0/buttons/0", &response)

▼ C++

lt::Button response; // struct to store the response
lt::error err = lt::Get("cv40:/0/buttons/0", response);

13

▼ Python

response, err = Get("cv40:/0/buttons/0")

5.2.5. Buttons Object

The buttons object is a collection of button objects. It allows to capture the state of multiple buttons
at once.

5.2.6. View Buttons State

To retrieve the status of all buttons at once, send a GET request to the buttons endpoint.

Parameters

None.

Response

Returns the buttons object if the request
succeeded.

GET /0/buttons

request

{
 "method": "GET",
 "url": "cv40:/0/buttons",
 "body": null
}

response

{
 {
 "description": "0/buttons/0",
 "pressed": false,
 "pressedCount": 0,
 "timestamp": 0
 }
 {
 "description": "0/buttons/1",
 "pressed": false,
 "pressedCount": 0,
 "timestamp": 0
 }
 {
 "description": "0/buttons/2",
 "pressed": false,
 "pressedCount": 0,
 "timestamp": 0
 }
 {
 "description": "0/buttons/3",
 "pressed": false,
 "pressedCount": 0,
 "timestamp": 0
 }
}

▼ Examples

14

▼ ecurl

$ ecurl get cv40:/0/buttons

▼ golang

var response lt.Buttons // struct to store the response
err := lt.Get("cv40:/0/buttons", &response)

▼ C++

lt::Buttons response; // struct to store the response
lt::error err = lt::Get("cv40:/0/buttons", response);

▼ Python

response, err = Get("cv40:/0/buttons/0")

5.3. Audio/Video structure
This is not an endpoint, but data structure used by other endpoints.

5.3.1. Audio object

audio json

Audio signal object.

→ description string

A short description of the audio signal.

→ format string

The audio sample format pcm.

→ channels int

The number of audio channels.

→ samplerate int

The number of audio samples per second.

→ depth int

The number of bits per audio sample.

→ signal string

none (not found), or locked (ready to use).

Audio object

{
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
}

5.3.2. Video object

15

video json

Video signal object.

→ description string

The video signal short description.

→ format string

The pixel color format rgb444, yuv444 or
yuv422.

→ framerate float

The number of video frames per second.

→ size [2]int

The video frame width and height in pixel
units.

→ interlaced bool

The video frame interlaced status.

→ signal string

none (not found), or locked (ready to use).

Video object

{
 "video": {
 "description": "",
 "format": "",
 "size": [0, 0],
 "framerate": 0,
 "interlaced": false,
 "signal": "none"
 }
}

5.4. Camera
This endpoint describes how to use camera inputs.
Native data can be accessed via the format path enumerator yuyv (video).
Some of the proposed format might require to use the host CPU and/or GPU before being delivered.

The pci endpoint allows to limit the maximum framerate coming through the PCIe bus to save
bandwidth and ensure best quality of service for multi-channel scenarios.

Some camera has GPIOs buttons that can be used to trigger a capture, a recording or zoom control.

16

:board

GET

camera :id

GET

data

POST

file

POST

net

POST

white

GET POST

colors

GET POST

exposure

GET POST

visuals

GET POST

buttons

GET

:pin

GET

GET /:board/camera/:id

POST /:board/camera/:id/data

POST /:board/camera/:id/file

POST /:board/camera/:id/net

GET /:board/camera/:id/white

POST /:board/camera/:id/white

GET /:board/camera/:id/colors

POST /:board/camera/:id/colors

GET /:board/camera/:id/exposure

POST /:board/camera/:id/exposure

GET /:board/camera/:id/visuals

POST /:board/camera/:id/visuals

GET /:board/camera/:id/buttons/:pin

board

Device position into the host [0 .. 1].

id

camera index number [0 .. 1].

pin

Button position [0 .. 4].

5.4.1. Camera Object

17

model string

Camera head model. If no devices is found,
the value is left empty.

sn int

Camera head serial number.

cpu int

Camera head CPU datecode.

fpga int

Camera head FPGA datecode. ---

audio object

The audio object for the Camera.

video object

The video object for the Camera.

Camera object

{
 "cpu": 0,
 "fpga": 0,
 "model": "",
 "sn": 0,
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "",
 "format": "",
 "size": [0, 0],
 "framerate": 0,
 "interlaced": false,
 "signal": "none"
 }
}

5.4.2. View Camera Status

To retrieve the camera signal status, send a GET request to the camera/:id endpoint

18

Parameters

None.

Response

Returns the camera object if the request
succeeded.

GET /:board/camera/:id

request

{
 "method": "GET",
 "url": "cv40:/0/camera/0",
 "body": null
}

response

{
 "cpu": 0,
 "fpga": 0,
 "model": "",
 "sn": 0,
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "",
 "format": "",
 "size": [0, 0],
 "framerate": 0,
 "interlaced": false,
 "signal": "none"
 }
}

▼ Examples

▼ ecurl

$ ecurl get cv40:/0/camera/0

▼ GO

var response lt.Camera // struct to store the response
err := lt.Get("cv40:/0/camera/0", &response)

▼ C++

lt::Camera response; // struct to store the response
lt::error err = lt::Get("cv40:/0/camera/0", response);

▼ Python

response, err = Get("cv40:/0/camera/0")

19

5.4.3. White Object

The white object is used to control the white balance and color temperature of the camera.

balance [3]float64

White balance red, green and blue gains [0.0
.. 2.0].

temperature int

Color temperature in Kelvin [3500 .. 7500].

White Object

{
 "balance": [1.0, 1.0, 1.0],
 "temperature": 6500,
}

5.4.4. View White Settings

To retrieve the camera white parameters, send a GET request to the white endpoint.

Parameters

None.

Response

Returns the white object if the request
succeeded.

GET /:board/camera/:id/white

request

{
 "method": "GET",
 "url": "cv40:/0/camera/0/white",
 "body": null
}

response

{
 "balance": [1.0, 1.0, 1.0],
 "temperature": 6500,
}

▼ Examples

▼ ecurl

$ ecurl get cv40:/0/camera/0/white

▼ GO

var response lt.CameraWhite // struct to store the response
err := lt.Get("cv40:/0/camera/0/white", &response)

▼ C++

lt::CameraWhite response;
lt::error err = lt::Get("cv40:/0/camera/0/white", response);

▼ Python

response, err = Get("cv40:/0/camera/0/white")

20

5.4.5. Update White Settings

To update the white settings, send a POST request with the parameters you want to update to the
white endpoint.
If you want to perform a white balance operation, send an empty body. In that case, the camera will
automatically adjust the white balance gains and temperature.

Parameters

None to perform a white balance operation.
Otherwise, include parameters of the white
object you want to update.
In the example, the temperature is set to 3800.

Response

Returns the white object if the request
succeeded.

POST /:board/camera/:id/white

request

{
 "method": "POST",
 "url": "cv40:/0/camera/0/white",
 "body": {
 "temperature": 3800
 }
}

response

{
 "balance": [1.0, 1.0, 1.0],
 "temperature": 3800,
}

▼ Examples

▼ ecurl

$ ecurl post cv40:/0/camera/0/white -d temperature=3800

▼ GO

body := lt.JSON{
 temperature: 3800,
}
var response lt.CameraWhite // struct to store the response
err := lt.Post("cv40:/0/camera/0/white", body, &response)

▼ C++

lt::json body = {
 {"temperature", 3800}
};
lt::CameraWhite response;
lt::error err = lt::Post("cv40:/0/camera/0/white", body, response);

▼ Python

body = {
 "temperature": 3800
}
response, err = Post("cv40:/0/camera/0/white", body)

21

5.4.6. Colors Object

The colors object is used to customize the color saturation, hue, brightness, contrast and gamma
correction.

hue int

Color hue [-30 .. 30].

saturation int

Color saturation [0 .. 100].

brightness int

Color brightness [0 .. 100].

contrast int

Color contrast [0 .. 100].

gamma float64

Color contrast [1.0 .. 2.4].

colorGain [3]float64

Color gain red, green and blue [0.0 .. 2.0].

Colors Object

{
 "hue": 0,
 "saturation": 50,
 "brightness": 50,
 "contrast": 50,
 "gamma": 2.2,
 "colorGain": [1.0, 1.0, 1.0]
}

5.4.7. View Colors Settings

To retrieve the camera colors parameters, send a GET request to the colors endpoint.

Parameters

None.

Response

Returns the colors object if the request
succeeded.

GET /:board/camera/:id/colors

request

{
 "method": "GET",
 "url": "cv40:/0/camera/0/colors",
 "body": null
}

response

{
 "hue": 0,
 "saturation": 50,
 "brightness": 50,
 "contrast": 50,
 "gamma": 2.2,
 "colorGain": [1.0, 1.0, 1.0]
}

22

▼ Examples

▼ ecurl

$ ecurl get cv40:/0/camera/0/colors

▼ GO

var response lt.CameraColors // struct to store the response
err := lt.Get("cv40:/0/camera/0/colors", &response)

▼ C++

lt::CameraColors response;
lt::error err = lt::Get("cv40:/0/camera/0/colors", response);

▼ Python

response, err = Get("cv40:/0/camera/0/colors")

5.4.8. Update Colors Settings

To update the colors settings, send a POST request with the parameters you want to update to the
colors endpoint.

Parameters

Include parameters of the colors object you
want to update.
In the example, the saturation is set to 80 and
the brightness to 60.

Response

Returns the colors object if the request
succeeded.

POST /:board/camera/:id/colors

request

{
 "method": "POST",
 "url": "cv40:/0/camera/0/colors",
 "body": {
 "brightness": 60,
 "saturation": 80
 }
}

response

{
 "hue": 0,
 "saturation": 80,
 "brightness": 60,
 "contrast": 50,
 "gamma": 2.2,
 "colorGain": [1.0, 1.0, 1.0]
}

▼ Examples

23

▼ ecurl

$ ecurl post cv40:/0/camera/0/colors -d saturation=80 -d brightness=60

▼ GO

body := lt.JSON{
 Saturation: 80,
 Brightness: 60,
}
var response lt.CameraColors // struct to store the response
err := lt.Post("cv40:/0/camera/0/colors", body, &response)

▼ C++

lt::json body = {
 {"saturation", 80},
 {"brightness", 60}
};
lt::CameraColors response;
lt::error err = lt::Post("cv40:/0/camera/0/colors", body, response);

▼ Python

body = {
 "saturation": 80,
 "brightness": 60
}
response, err = Post("cv40:/0/camera/0/colors", body)

5.4.9. Exposure Object

The exposure object is used to control the manual and auto exposure settings of the camera.

24

framerate string

Camera framerate 50 or 60.

shutter float64

Sensor shutter gain [1.0 .. 240.0].

gain float64

Sensor analog gain [1.0 .. 22.5].

binning float64

Sensor binning gain [1.0 .. 8.0].

lowLightGain float64

Artificially increase the luminosity level of
the camera with a non linear gain on darker
pixels [1.0 .. 2.45].

isAuto bool

Enable/disable auto exposure.

level float64

Luminance target when auto exposure is
enabled [50 .. 90].

speed float64

Auto exposure convergence speed [20 ..
100].

maxSaturation float64

Auto exposure maximum saturated pixel
tolerance [0 .. 30] percent.

window [4]int

Auto exposure window position and size: x,
y, width, height.

Exposure object

{
 "framerate": 50,
 "shutter": 153.777777,
 "gain": 1,
 "binning": 0,
 "lowLightGain": 0,
 "isAuto": true,
 "level": 80,
 "speed": 80,
 "maxSaturation": 5,
 "window": [0, 72, 3840, 2048],
 "shutterLimits": [1, 240.0],
 "gainLimits": [1, 22.5],
 "binningLimits": [1, 1],
 "lowLightGainLimits": [1, 1],
}

25

shutterLimits [2]float64

Sensor shutter auto exposure minimum and
maximum limits.

gainLimits [2]float64

Sensor analog gain auto exposure minimum
and maximum limits.

binningLimits [2]float64

Sensor binning gain auto exposure minimum
and maximum limits.

lowLightGainLimits [2]float64

Low light gain auto exposure minimum and
maximum limits.

5.4.10. View Exposure Settings

To retrieve the camera exposure parameters, send a GET request to the exposure endpoint.

Parameters

None.

Response

Returns the exposure object if the request
succeeded.

GET /:board/camera/:id/exposure

request

{
 "method": "GET",
 "url": "cv40:/0/camera/0/exposure",
 "body": null
}

response

{
 "framerate": 50,
 "shutter": 153.777777,
 "gain": 1,
 "binning": 0,
 "lowLightGain": 0,
 "isAuto": true,
 "level": 80,
 "speed": 80,
 "maxSaturation": 5,
 "window": [0, 72, 3840, 2048],
 "shutterLimits": [1, 240.0],
 "gainLimits": [1, 22.5],
 "binningLimits": [1, 1],
 "lowLightGainLimits": [1, 1],
}

▼ Examples

26

▼ ecurl

$ ecurl get cv40:/0/camera/0/exposure

▼ GO

var response lt.CameraExposure // struct to store the response
err := lt.Get("cv40:/0/camera/0/exposure", &response)

▼ C++

lt::CameraExposure response;
lt::error err = lt::Get("cv40:/0/camera/0/exposure", response);

▼ Python

response, err = Get("cv40:/0/camera/0/exposure")

5.4.11. Update Exposure Settings

Change the exposure parameters as required by your application by sending a POST request to the
exposure endpoint.

Parameters

Include settings of the exposure object you want
to update.
In the example, the gainLimits is set to [2.5,
15].

Response

Returns the exposure object if the request
succeeded.

POST /:board/camera/:id/exposure

request

{
 "method": "POST",
 "url": "cv40:/0/camera/0/exposure",
 "body": {
 "gainLimits": [2.5, 15.0]
 }
}

response

{
 "framerate": 50,
 "shutter": 153.777777,
 "gain": 1,
 "binning": 0,
 "lowLightGain": 0,
 "isAuto": true,
 "level": 80,
 "speed": 80,
 "maxSaturation": 5,
 "window": [0, 72, 3840, 2048],
 "shutterLimits": [1, 240.0],
 "gainLimits": [2.5, 15],
 "binningLimits": [1, 1],
 "lowLightGainLimits": [1, 1],
}

▼ Examples

27

▼ ecurl

$ ecurl post cv40:/0/camera/0/exposure -d gainLimits=2.5,15.0

▼ GO

body := lt.JSON{
 GainLimits: [2.5, 15.0],
}
var response lt.CameraExposure // struct to store the response
err := lt.Post("cv40:/0/camera/0/exposure", body, &response)

▼ C++

lt::json body = {
 {"gainLimits", {2.5, 15.0}}
};
lt::CameraExposure response;
lt::error err = lt::Post("cv40:/0/camera/0/exposure", body, response);

▼ Python

body = {
 "gainLimits": [2.5, 15.0]
}
response, err = Post("cv40:/0/camera/0/exposure", body)

5.4.12. Visuals Object

The visuals object regroups parameters to enhance the camera picture. It includes sharpness,
anisotropic and bilateral denoising filters, shadow lighting effect, flip and zoom settings.

28

anisotropic int

Strength of the anisotropic denoising filter [0
.. 100].

bilateral int

Strength of the bilateral denoising filter [0 ..
100].

flip string

Flip Horizontally and/or Vertically the
camera. none, x, y, xy.

shadow lighting gain float64

Artificially increase the luminosity level of
the camera with a non linear gain on darker
pixels [1.0 .. 2.5].

sharpness float64

Strength of the sharpness filter [1.0 .. 9.0].

sharpnessFloor int

Floor threshold at which the sharpness filter
begin to take effect [0 .. 50].

zoom float64

Digital zoom [1.0 .. 4.0].

Visuals object

{
 "anisotropic": 0,
 "bilateral": 0,
 "flip": "none",
 "shadowLightingGain": 1,
 "sharpness": 3.1,
 "sharpnessFloor": 0,
 "zoom": 1
}

5.4.13. View Visuals Settings

To retrieve the camera visuals parameters, send a GET request to the visuals endpoint.

29

Parameters

None.

Response

Returns the visuals object if the request
succeeded.

GET /:board/camera/:id/visuals

request

{
 "method": "GET",
 "url": "cv40:/0/camera/0/visuals",
 "body": null
}

response

{
 "anisotropic": 0,
 "bilateral": 0,
 "flip": "none",
 "shadowLightingGain": 1,
 "sharpness": 3.1,
 "sharpnessFloor": 0,
 "zoom": 1
}

▼ Examples

▼ ecurl

$ ecurl get cv40:/0/camera/0/visuals

▼ GO

var response lt.CameraVisuals // struct to store the response
err := lt.Get("cv40:/0/camera/0/visuals", &response)

▼ C++

lt::CameraVisuals response;
lt::error err = lt::Get("cv40:/0/camera/0/visuals", response);

▼ Python

response, err = Get("cv40:/0/camera/0/visuals")

5.4.14. Update Visuals Settings

Change the camera visuals as required by your application by sending a POST request to the
visuals endpoint.

30

Parameters

Include settings of the visuals object you want to
update.
In the example, the sharpness is set to 2.5.

Response

Returns the visuals object if the request
succeeded.

POST /:board/camera/:id/visuals

request

{
 "method": "POST",
 "url": "cv40:/0/camera/0/visuals",
 "body": {
 "sharpness": 2.5
 }
}

response

{
 "anisotropic": 0,
 "bilateral": 0,
 "flip": "none",
 "shadowLightingGain": 1.0,
 "sharpness": 2.5,
 "sharpnessFloor": 0,
 "zoom": 1
}

▼ Examples

▼ ecurl

$ ecurl post cv40:/0/camera/0/visuals -d sharpness=2.5

▼ GO

body := lt.JSON{
 Sharpness: 2.5,
}
var response lt.CameraVisuals // struct to store the response
err := lt.Post("cv40:/0/camera/0/visuals", body, &response)

▼ C++

lt::json body = {
 {"sharpness", 2.5}
};
lt::CameraVisuals response;
lt::error err = lt::Post("cv40:/0/camera/0/visuals", body, response);

▼ Python

body = {
 "sharpness": 2.5
}
response, err = Post("cv40:/0/camera/0/visuals", body)

5.4.15. Button Object

The button object allows to capture the button pin state.

31

description string

Description of the button pin.

pressed bool

Is the button currently 'pressed'.

pressedCount int

Number of times the button has been pressed
since the last 'release' event.

timestamp int64

The unix timestamp of the last 'press' or
'release' event in microseconds.

Button object

{
 "description": "0/camera/0/buttons/0",
 "pressed": false,
 "pressedCount": 0,
 "timestamp": 0
}

5.4.16. View Button State

To retrieve the button status, send a GET request to the button/:pin endpoint.

Parameters

None.

Response

Returns the button object if the request
succeeded.

GET /0/camera/0/buttons/:pin

request

{
 "method": "GET",
 "url": "cv40:/0/camera/0/buttons/0",
 "body": null
}

response

{
 "description": "0/camera/0/buttons/0",
 "pressed": false,
 "pressedCount": 0,
 "timestamp": 0
}

▼ Examples

▼ ecurl

$ ecurl get cv40:/0/camera/0/buttons/0

▼ golang

var response lt.Button // struct to store the response
err := lt.Get("cv40:/0/camera/0/buttons/0", &response)

▼ C++

lt::Button response; // struct to store the response
lt::error err = lt::Get("cv40:/0/camera/0/buttons/0", response);

32

▼ Python

response, err = Get("cv40:/0/camera/0/buttons/0")

5.4.17. Buttons Object

The buttons object is a collection of button objects. It allows to capture the state of multiple buttons
at once.

5.4.18. View Buttons State

To retrieve the status of all buttons at once, send a GET request to the buttons endpoint.

Parameters

None.

Response

Returns the buttons object if the request
succeeded.

GET /0/camera/0/buttons

request

{
 "method": "GET",
 "url": "cv40:/0/camera/0/buttons",
 "body": null
}

response

{
 {
 "description": "0/camera/0/buttons/0",
 "pressed": false,
 "pressedCount": 0,
 "timestamp": 0
 }
 {
 "description": "0/camera/0/buttons/1",
 "pressed": false,
 "pressedCount": 0,
 "timestamp": 0
 }
 {
 "description": "0/camera/0/buttons/2",
 "pressed": false,
 "pressedCount": 0,
 "timestamp": 0
 }
 {
 "description": "0/camera/0/buttons/3",
 "pressed": false,
 "pressedCount": 0,
 "timestamp": 0
 }
}

▼ Examples

33

▼ ecurl

$ ecurl get cv40:/0/camera/0/buttons

▼ golang

var response lt.Buttons // struct to store the response
err := lt.Get("cv40:/0/camera/0/buttons", &response)

▼ C++

lt::Buttons response; // struct to store the response
lt::error err = lt::Get("cv40:/0/camera/0/buttons", response);

▼ Python

response, err = Get("cv40:/0/camera/0/buttons/0")

5.5. HDMI Output
Allows to configure the physical hdmi outputs on a LT board.

:board

GET

hdmi-out :id

GET POST

GET /:board/hdmi-out/:id

POST /:board/hdmi-out/:id

board

Device position into the host [0 .. 1].

id

hdmi-out index number 0.

5.5.1. HDMI Output Object

34

source string

The hdmi-out source. Values can be auto,
camera/:id.

overlay string

The overlay source applied on the hdmi-out.
Values can be canvas/:id or none for no
overlay.

overlayMode string

Controls how overlay content is processed on
the output device. This parameter affects the
quality and performance of overlays. Values
can be performance or quality.

format string

The color format applied to the output.
Values can be auto, rgb444, yuv444 and yuv422.

link string

The hdmi-out link carrier. Values can be auto,
fhd or off.

audio object

The audio object for the HDMI Output.

video object

The video object for the HDMI Output.

HDMI Output object

{
 "source": "auto",
 "overlay": "none",
 "overlayMode": "performance",
 "format": "auto",
 "link": "auto",
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "none",
 "format": "",
 "size": [0, 0],
 "framerate": 0,
 "interlaced": false,
 "signal": "none"
 }
}

5.5.2. View HDMI Output Status

To retrieve the hdmi-out configuration, send a GET request to the hdmi-out/:id endpoint.

35

Parameters

None.

Response

Returns the hdmi-out object if the request
succeeded.

GET /:board/hdmi-out/:id

request

{
 "method": "GET",
 "url": "cv40:/0/hdmi-out/0",
 "body": null
}

response

{
 "source": "auto",
 "overlay": "none",
 "overlayMode": "performance",
 "format": "auto",
 "link": "auto",
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "none",
 "format": "",
 "size": [0, 0],
 "framerate": 0,
 "interlaced": false,
 "signal": "none"
 }
}

▼ Examples

▼ ecurl

$ ecurl get cv40:/0/hdmi-out/0

▼ GO

var response lt.Output // struct to store the response
err := lt.Get("cv40:/0/hdmi-out/0", &response)

▼ C++

lt::HdmiOutput response; // struct to store the response
lt::error err = lt::Get("cv40:/0/hdmi-out/0", response);

▼ Python

response, err = Get("cv40:/0/hdmi-out/0")

36

5.5.3. Configure HDMI Output

In order to update the hdmi-out configuration, send a POST request to the hdmi-out/:id endpoint
with the desired settings.

Parameters

Include settings of the hdmi-out object you want
to update.
In the example, the hdmi-out overlay is set to
canvas/0.

Response

Returns the hdmi-out object if the request
succeeded.

POST /:board/hdmi-out/:id

request

{
 "method": "POST",
 "url": "cv40:/0/hdmi-out/0",
 "body": {
 "overlay": "canvas/0"
 }
}

response

{
 "source": "auto",
 "overlay": "canvas/0",
 "overlayMode": "performance",
 "format": "auto",
 "link": "auto",
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "",
 "format": "",
 "size": [0, 0],
 "framerate": 0,
 "interlaced": false,
 "signal": "none"
 }
}

▼ Examples

▼ ecurl

$ ecurl post cv40:/0/hdmi-out/0 -d overlay=canvas/0

▼ GO

body := lt.JSON{
 "overlay": "canvas/0",
}
var response lt.Output // struct to store the response
err := lt.Post("cv40:/0/hdmi-out/0", body, &response)

▼ C++

lt::json body = {
 {"overlay", "canvas/0"}
};

37

lt::HdmiOutput response; // struct to store the response
lt::error err = lt::Post("cv40:/0/hdmi-out/0", body, response);

▼ Python

body = {
 "overlay": "canvas/0"
}
response, err = Post("cv40:/0/hdmi-out/0", body)

5.6. SDI Output
Allows to configure the physical sdi outputs on a LT board.

:board

GET

sdi-out :id

GET POST

GET /:board/sdi-out/:id

POST /:board/sdi-out/:id

board

Device position into the host [0 .. 1].

id

sdi-out index number 0.

5.6.1. SDI Output Object

38

source string

The sdi-out source. Values can be auto,
camera/:id.

overlay string

The overlay source applied on the sdi-out.
Values can be none or canvas/:id.

format string

The color format applied to the output.
Values is yuv422.

link string

The sdi-out link carrier. Values can be auto,
uhd_4x3g, fhd or off.

audio json

Audio signal object.

→ description string

A short description of the audio signal.

→ format string

The audio sample format pcm.

→ channels int

The number of audio channels.

→ samplerate int

The number of audio samples per second.

→ depth int

The number of bits per audio sample.

→ signal string

none (not found), or locked (ready to use).

SDI Output object

{
 "source": "auto",
 "overlay": "none",
 "format": "auto",
 "link": "auto",
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "",
 "format": "",
 "framerate": 0,
 "size": [0, 0],
 "interlaced": false,
 "signal": "none"
 }
}

39

video json

Video signal object.

→ description string

The video signal short description.

→ format string

The pixel color format rgb444, yuv444 or
yuv422.

→ framerate float

The number of video frames per second.

→ size [2]int

The video frame width and height in pixel
units.

→ interlaced bool

The video frame interlaced status.

→ signal string

none (not found), or locked (ready to use).

5.6.2. View SDI Output Status

To retrieve the sdi-out configuration, send a GET request to the sdi-out/:id endpoint.

40

Parameters

None.

Response

Returns the sdi-out object if the request
succeeded.

GET /:board/sdi-out/:id

request

{
 "method": "GET",
 "url": "cv40:/0/sdi-out/0",
 "body": null
}

response

{
 "source": "auto",
 "overlay": "none",
 "format": "auto",
 "link": "auto",
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "",
 "format": "",
 "framerate": 0,
 "size": [0, 0],
 "interlaced": false,
 "signal": "none"
 }
}

▼ Examples

▼ ecurl

$ ecurl get cv40:/0/sdi-out/0

▼ GO

var response lt.Output // struct to store the response
err := lt.Get("cv40:/0/sdi-out/0", &response)

▼ C++

lt::SdiOutput response; // struct to store the response
lt::error err = lt::Get("cv40:/0/sdi-out/0", response);

▼ Python

response, err = Get("cv40:/0/sdi-out/0")

41

5.6.3. Configure SDI Output

In order to update the sdi-out configuration, send a POST request to the sdi-out/:id endpoint with
the desired settings.

Parameters

Include settings of the sdi-out object you want to
update.
In the example, the sdi-out overlay is set to
canvas/0.

Response

Returns the sdi-out object if the request
succeeded.

POST /:board/sdi-out/:id

request

{
 "method": "POST",
 "url": "cv40:/0/sdi-out/0",
 "body": {
 "overlay": "canvas/0"
 }
}

response

{
 "source": "auto",
 "overlay": "canvas/0",
 "format": "auto",
 "link": "auto",
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "",
 "format": "",
 "framerate": 0,
 "size": [0, 0],
 "interlaced": false,
 "signal": "none"
 }
}

▼ Examples

▼ ecurl

$ ecurl post cv40:/0/sdi-out/0 -d overlay=canvas/0

▼ GO

body := lt.JSON{
 "overlay": "canvas/0",
}
var response lt.Output // struct to store the response
err := lt.Post("cv40:/0/sdi-out/0", body, &response)

▼ C++

lt::json body = {
 {"overlay", "canvas/0"}
};
lt::SdiOutput response; // struct to store the response

42

lt::error err = lt::Post("/0/sdi-out/0", body, response);

▼ Python

body = {
 "overlay": "canvas/0"
}
response, err = Post("cv40:/0/sdi-out/0", body)

5.7. Canvas
The canvas endpoint is both a virtual audio/video source and a dynamic synthetic image generator
which supports draw operations. It could be used to emulate the LT boards video inputs and to send
overlay images onto the hdmi and/or sdi outputs.

Data operations

canvas :id

GET DELETE

data

POST

file

POST

GET /canvas/:id

POST /canvas/:id/:format/data

POST /canvas/:id/:format/file

id

canvas index number [0 .. 3].

Draw operations

43

canvas :id

GET

init

POST

text

POST

line

POST

ellipse

POST

rectangle

POST

image

POST

video

POST

clear

POST

op

POST

ops

POST

GET /canvas/:id

POST /canvas/:id/init

POST /canvas/:id/line

POST /canvas/:id/ellipse

POST /canvas/:id/rectangle

POST /canvas/:id/image

POST /canvas/:id/video

POST /canvas/:id/clear

POST /canvas/:id/op

POST /canvas/:id/ops

id

canvas index number [0 .. 3].

44

5.7.1. Canvas Object

audio object

The audio object for the Canvas.

video object

The video object for the Canvas.

Canvas object

{
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "",
 "format": "",
 "size": [0, 0],
 "framerate": 0,
 "interlaced": false,
 "signal": "none"
 }
}

5.7.2. View Canvas Status

To retrieve the canvas signal status, send a GET request to the canvas/:id endpoint

Parameters

None.

Response

Returns the canvas object if the request
succeeded.

GET /canvas/:id

request

{
 "method": "GET",
 "url": "cv40:/canvas/0",
 "body": null
}

response

{
 "audio": {
 "description": "",
 "format": "",
 "channels": 0,
 "samplerate": 0,
 "depth": 0,
 "signal": "none"
 },
 "video": {
 "description": "",
 "format": "",
 "size": [0, 0],
 "framerate": 0,
 "interlaced": false,
 "signal": "none"
 }
}

45

▼ Examples

▼ ecurl

$ ecurl get cv40:/canvas/0

▼ GO

var response lt.Input // struct to store the response
err := lt.Get("cv40:/canvas/0", &response)

▼ C++

lt::Input response; // struct to store the response
lt::error err = lt::Get("cv40:/canvas/0", response);

▼ Python

response, err = Get("cv40:/canvas/0")

5.7.3. Delete Operation

Clear the canvas to a "NO SIGNAL" equivalent. Helps to simulate a video input loss.

Parameters

None.

Response

Returns an error if the request failed.

DELETE /canvas/:id

request

{
 "method": "DELETE",
 "url": "cv40:/canvas/0",
 "body": null
}

response

{

}

▼ Examples

46

▼ ecurl

$ ecurl delete cv40:/canvas/0

▼ GO

err := lt.Delete("cv40:/canvas/0", nil, nil)

▼ C++

lt::error err = lt::Delete("cv40:/canvas/0", nullptr, nullptr);

▼ Python

err = Delete("cv40:/canvas/0")

5.7.4. Init Operation

Clear the canvas and fill the background with the specified file, pattern or color.

Parameters

op string

Operation identifier init.

source string

The canvas size and framerate is derived
from the file content. Supported formats are
jpeg, png, bmp and mp4 files.
In the example, the source is a mp4 video
file.

color [4]int

The RGBA background color with
transparency. Default [0,0,0,0].

size [2]int

Set the canvas width and height. Default
[3840,2160].

framerate float

Set the canvas refresh rate. Default 30.0.

Response

Returns the init operation parameters if the
request succeeded.

POST /canvas/:id/init

request

{
 "method": "POST",
 "url": "cv40:/canvas/0/init",
 "body": {
 "source": "video.mp4",
 }
}

response

{
 "op": "init",
 "source": "video.mp4",
 "color": [0,0,0,0],
 "size": [3840,2160],
 "framerate": 30.0
}

47

▼ Examples

▼ ecurl

$ ecurl post cv40:/canvas/0/init -d source=video.mp4

▼ GO

body := lt.JSON{
 "source": "video.mp4",
}
err := lt.Post("cv40:/canvas/0/init", body, nil)

▼ C++

lt::json body = {
 {"source", "video.mp4"}
};
lt::error err = lt::Post("cv40:/canvas/0/init", body, nullptr);

▼ Python

body = {
 "source": "video.mp4"
}
resp, err = Post("cv40:/canvas/0/init", body)

5.7.5. Text Operation

Draw text onto the canvas.

48

Parameters

op string

Operation identifier text.

text string

Text to draw. This parameter is mandatory.

align string

Set the text position into the container.The
possible values are top-left, top, top-right,
left, center, right, bottom-left, bottom and
bottom-right. Default is center.

font string

Font type. Default is regular, could also be
mono and smallcaps.

fontSize int

Font size in pt unit. Default is 32.

italic bool

Draw the text with the italic attribute.
Default false.

bold bool

Draw the text with the bold attribute. Default
false.

color [4]int

The RGBA shape color with transparency.
Default {0,0,0,255}.

angle float

Rotation angle in degree unit. Default 0.

position [2]int

The top left corner {x, y} position of the
container. Default is {0,0}.

size [2]int

The container size {width, height}. ---

POST /canvas/:id/text

request

{
 "method": "POST",
 "url": "cv40:/canvas/0/text",
 "body": {
 "text": "hello world!",
 "size": [3840,2160],
 }
}

response

{
 "op": "text",
 "text": "hello world!",
 "align": "center",
 "font": "regular",
 "fontSize": 32,
 "italic": false,
 "bold": false,
 "color": [255, 255, 255, 255],
 "angle": 0,
 "position": [0, 0],
 "size": [3840, 2160],
 "anchor": [0, 0]
}

Response

Returns the text operation parameters if the
request succeeded.

▼ Examples

49

▼ ecurl

$ ecurl post cv40:/canvas/0/text -d text="hello world!"

▼ GO

body := lt.JSON{
 "text": "hello world!",
}
err := lt.Post("cv40:/canvas/0/text", body, nil)

▼ C++

lt::json body = {
 {"text", "hello world!"}
};
lt::error err = lt::Post("cv40:/canvas/0/text", body, nullptr);

▼ Python

body = {
 "text": "hello world!"
}
resp, err = Post("cv40:/canvas/0/text", body)

5.7.6. Line Operation

Draw a line whose top left anchor is (x,y) coordinates.

50

Parameters

op string

Operation identifier line.

width int

The shape width size in pixel unit. Default 1.

color [4]int

The RGBA shape color with transparency.
Default {0,0,0,255}.

pattern []int

The dash size pattern in pixel units. The
pattern is repeated. Default no dash pattern:
{}.

angle float

Rotation angle in degree unit. Default 0.

position [2]int

The top left corner {x, y} position of the
container. Default is {0,0}.

size [2]int

The container size {width, height}. This
parameter is mandatory.

Response

Returns the line operation parameters if the
request succeeded.

POST /canvas/:id/line

request

{
 "method": "POST",
 "url": "cv40:/canvas/0/line",
 "body": {
 "position": [0,0],
 "size": [3840,2160],
 "color": [255,0,0,255]
 }
}

response

{
 "op": "line",
 "width": 1,
 "color": [255, 0, 0, 255],
 "pattern": null,
 "angle": 0,
 "position": [0, 0],
 "size": [3840, 2160],
 "anchor": [0, 0]
}

▼ Examples

51

▼ ecurl

$ ecurl post cv40:/canvas/0/line \
 -d position=0,0 \
 -d size=3840,2160 \
 -d color=255,0,0,255

▼ GO

body := lt.JSON{
 "position": [0,0],
 "size": [3840,2160],
 "color": [255,0,0,255]
}
err := lt.Post("cv40:/canvas/0/line", body, nil)

▼ C++

lt::json body = {
 {"position", {0,0}},
 {"size", {3840,2160}},
 {"color", {255,0,0,255}}
};
lt::error err = lt::Post("cv40:/canvas/0/line", body, nullptr);

▼ Python

body = {
 "position": [0, 0],
 "size": [3840, 2160],
 "color": [255, 0, 0, 255]
}
resp, err = Post("cv40:/canvas/0/line", body)

5.7.7. Ellipse Operation

Draw an ellipse whose top left anchor is (x,y) coordinates.

52

Parameters

op string

Operation identifier ellipse.

width int

The shape width size in pixel unit. Default 1.

color [4]int

The RGBA shape color with transparency.
Default {0,0,0,255}.

pattern []int

The dash size pattern in pixel units. The
pattern is repeated. Default no dash pattern:
{}.

fill [4]int

Fill the shape with a RGBA color. Default is
{0,0,0,0}.

angle float

Rotation angle in degree unit. Default 0.

position [2]int

The top left corner {x, y} position of the
container. Default is {0,0}.

size [2]int

The container size {width, height}. This
parameter is mandatory.

Response

Returns the ellipse operation parameters if the
request succeeded.

POST /canvas/:id/ellipse

request

{
 "method": "POST",
 "url": "cv40:/canvas/0/ellipse",
 "body": {
 "position": [0,0],
 "size": [3840,2160],
 "color": [255,0,0,255],
 "fill": [0,255,0,255]
 }
}

response

{
 "op": "ellipse",
 "width": 10,
 "color": [255, 0, 0, 255],
 "pattern": null,
 "fill": [0, 255, 0, 255],
 "angle": 0,
 "position": [0, 0],
 "size": [3840, 2160],
 "anchor": [0, 0]
}

▼ Examples

▼ ecurl

$ ecurl post cv40:/canvas/0/ellipse \
 -d position=0,0 \
 -d size=3840,2160 \
 -d color=255,0,0,255 \
 -d fill=0,255,0,255

▼ GO

body := lt.JSON{
 "position": [0,0],

53

 "size": [3840,2160],
 "color": [255,0,0,255],
 "fill": [0,255,0,255]
}
err := lt.Post("cv40:/canvas/0/ellipse", body, nil)

▼ C++

lt::json body = {
 {"position", {0,0}},
 {"size", {3840,2160}},
 {"color", {255,0,0,255}},
 {"fill", {0,255,0,255}}
};
lt::error err = lt::Post("cv40:/canvas/0/ellipse", body, nullptr);

▼ Python

body = {
 "position": [0,0],
 "size": [3840,2160],
 "color": [255,0,0,255],
 "fill": [0,255,0,255]
}
resp, err = Post("cv40:/canvas/0/ellipse", body)

5.7.8. Rectangle Operation

Draw a rectangle whose top left anchor is (x,y) coordinates.

54

Parameters

op string

Batch operation identifier rectangle.

width int

The shape width size in pixel unit. Default 1.

color [4]int

The RGBA shape color with transparency.
Default {0,0,0,255}.

pattern []int

The dash size pattern in pixel units. The
pattern is repeated. Default no dash pattern:
{}.

fill [4]int

Fill the shape with a RGBA color. Default is
{0,0,0,0}.

rounded int

The shape corner radius in pixel unit. Default
0.

angle float

Rotation angle in degree unit. Default 0.

position [2]int

The top left corner {x, y} position of the
container. Default is {0,0}.

size [2]int

The container size {width, height}. This
parameter is mandatory.

Response

Returns the rectangle operation parameters if
the request succeeded.

POST /canvas/:id/rectangle

request

{
 "method": "POST",
 "url": "cv40:/canvas/0/rectangle",
 "body": {
 "position": [100,100],
 "size": [400,400],
 "fill": [0,0,255,255]
 }
}

response

{
 "op": "rectangle",
 "width": 1,
 "color": [255, 255, 255, 255],
 "pattern": null,
 "fill": [0, 0, 255, 255],
 "rounded": 0,
 "angle": 0,
 "position": [100, 100],
 "size": [400, 400],
 "anchor": [0, 0]
}

▼ Examples

55

▼ ecurl

$ ecurl post cv40:/canvas/0/rectangle \
 -d position=100,100 \
 -d size=400,400 \
 -d fill=0,0,255,255

▼ GO

body := lt.JSON{
 "position": [100,100],
 "size": [400,400],
 "fill": [0,0,255,255]
}
err := lt.Post("cv40:/canvas/0/rectangle", body, nil)

▼ C++

lt::json body = {
 {"position", {100,100}},
 {"size", {400,400}},
 {"fill", {0,0,255,255}}
};
lt::error err = lt::Post("cv40:/canvas/0/rectangle", body, nullptr);

▼ Python

body = {
 "position": [100,100],
 "size": [400,400],
 "fill": [0,0,255,255]
}
resp, err = Post("cv40:/canvas/0/rectangle", body)

5.7.9. Image Operation

There are two ways to draw an image on the canvas:

• Using a file path with the source parameter. The format, data, width and height parameters are
ignored.

• Using a data buffer with the data parameter. The format parameter is mandatory and if a raw
format is used (i.e. rgba or rgb), the width and height parameters are required too.

56

Parameters

op string

Operation identifier image.

source string

Filepath. Supported formats are jpeg, png and
bmp files.

angle float

Rotation angle in degree unit. Default 0.

position [2]int

The top left corner {x, y} position of the
container. Default is {0,0}.

size [2]int

The container size {width, height}. This
parameter is mandatory.

format string

The image data format. Could be rgba, rgb,
bmp, jpeg or png.

data []byte

Image data buffer.

width int

Image width. Mandatory for rgba or rgb data
buffer.

height int

Image height. Mandatory for rgba or rgb data
buffer.

Response

Returns the image operation parameters if the
request succeeded.

POST /canvas/:id/image

request

{
 "method": "POST",
 "url": "cv40:/canvas/0/image",
 "body": {
 "source": "C:\\image.png",
 "position": [0,0],
 "size": [640,480]
 }
}

response

{
 "op": "image",
 "source": "C:\\image.png",
 "angle": 0,
 "position": [0, 0],
 "size": [640, 480],
 "anchor": [0, 0],
 "format": "",
 "data": null,
 "width": 0,
 "height": 0
}

▼ Examples

▼ ecurl

$ ecurl post cv40:/canvas/0/image \
 -d source=C:\\image.png \
 -d position=0,0 \
 -d size=640,480

57

▼ GO

body := lt.JSON{
 "source": "C:\\image.png",
 "position": [0,0],
 "size": [640,480]
}
err := lt.Post("cv40:/canvas/0/image", body, nil)

▼ C++

lt::json body = {
 {"source", "C:\\image.png"},
 {"position", {0,0}},
 {"size", {640,480}}
};
lt::error err = lt::Post("cv40:/canvas/0/image", body, nullptr);

▼ Python

body = {
 "source": "C:\\image.png",
 "position": [0,0],
 "size": [640,480]
}
resp, err = Post("cv40:/canvas/0/image", body)

5.7.10. Video Operation

Place a video on the canvas.

Parameters

op string

Batch operation identifier video.

source string

Supported sources are :board/camera/:id and
canvas/:id.

position [2]int

The top left corner {x, y} position of the
container. Default is {0,0}.

size [2]int

The container size {width, height}.

Response

Returns the video operation parameters if the
request succeeded.

POST /canvas/:id/video

request

{
 "method": "POST",
 "url": "cv40:/canvas/0/video",
 "body": {
 "source": "0/camera/0",
 "position": [0,0],
 "size": [1920,1080]
 }
}

response

{
 "op": "video",
 "source": "0/{source}/0",
 "position": [0, 0],
 "size": [1920, 1080],
 "anchor": [0, 0]
}

▼ Examples

58

▼ ecurl

$ ecurl post cv40:/canvas/0/video \
 -d source=0/camera/0 \
 -d position=0,0 \
 -d size=1920,1080

▼ GO

body := lt.JSON{
 "source": "0/camera/0",
 "position": [0,0],
 "size": [1920,1080]
}
err := lt.Post("cv40:/canvas/0/video", body, nil)

▼ C++

lt::json body = {
 {"source", "0/camera/0"},
 {"position", {0,0}},
 {"size", {1920,1080}}
};
lt::error err = lt::Post("cv40:/canvas/0/video", body, nullptr);

▼ Python

body = {
 "source": "0/sdi-in/0",
 "position": [0,0],
 "size": [1920,1080]
}
resp, err = Post("cv40:/canvas/0/video", body)

5.7.11. Clear Operation

Clear the canvas and fill the background with the specified color or remove video sources from the
canvas.

59

Parameters

op string

Operation identifier clear.

source string

Supported sources are :board/sdi-in/:id,
:board/hdmi-in/:id, canvas/:id and all.

color [4]int

The RGBA background color with
transparency. Default [0,0,0,0].

position [2]int

The top left corner position for partial
clearing. Default is [0,0].

size [2]int

Area dimensions to clear. If omitted, clears
the entire canvas.

thickness int

Expand the area to clear by this amount of
pixels on all sides. Default 0.

Response

Returns the clear operation parameters if the
request succeeded.

POST /canvas/:id/op

request

{
 "method": "POST",
 "url": "cv40:/canvas/0/op",
 "body": {
 "op": "clear",
 "source": "0/sdi-in/0"
 }
}

response

{
 "op": "clear",
 "source": "0/sdi-in/0",
 "color": [0,0,0,0],
 "position": [0,0],
 "size": [0,0],
 "thickness": 0
}

▼ Examples

60

▼ ecurl - Clear entire canvas

$ ecurl post cv40:/canvas/0/op -d op=clear -d color=0,0,0,255

▼ ecurl - Remove specific video source

$ ecurl post cv40:/canvas/0/op -d op=clear -d source=0/hdmi-in/0

▼ ecurl - Remove all video sources

$ ecurl post cv40:/canvas/0/op -d op=clear -d source=all

▼ GO

body := lt.JSON{
 "op": "clear",
 "source": "0/sdi-in/0",
}
err := lt.Post("cv40:/canvas/0/op", body, nil)

▼ C++

lt::json body = {
 {"op", "clear"},
 {"source", "0/sdi-in/0"}
};
lt::error err = lt::Post("cv40:/canvas/0/op", body, nullptr);

5.7.12. Batch Operations

Draw operations in batch.

Parameters

ops []JSON

Array of canvas operations.

Response

Returns the operations if succeeded.

POST /canvas/:id/ops

request

$ ecurl post cv40:/canvas/0/ops \
 -d ops=@draw.json

response

{
 "ops": { ... },
}

5.8. Client
The client endpoint retains the connection context, the living memory references and the running
workers. Once a client is done with a resource, it has to delete it. If the client dies or ceases to
communicate, the cv40agent will automatically collect the resources and clean them.

61

client jobs :id

GET

start

POST

stop

POST

pause

POST

refs :id

DELETE

GET /client/jobs/:id

POST /client/jobs/:id/start

POST /client/jobs/:id/pause

POST /client/jobs/:id/stop

DELETE /client/refs/:id

id

Object identifier.

5.8.1. Fetch Worker Updates

The long running task(s) (eg: recording a mp4)
are child processe(s) of the client(s) which have
initiated the request(s). These task(s) are
processed by worker(s) that are attached into
the client(s) context(s) with an unique ID.

Retrieving the updates periodically ensures that
the tasks are properly processed and allow to
fetch the data out of the cv40agent.

GET /client/job/:id

Please go to Section 5.9, “Workers” to learn the
complete workflow usage.

5.8.2. Release Referenced Memory

62

Clients and cv40agent communicate by
exchanging references on shared memory
blocks.

Once processed, it is recommended to expressly
release the references, otherwise the cv40agent
memory pool can run out of shared memory
blocks.

Depending to your development language
(Garbage Collected or not), the SDK wrapper
might automatically release the memory for
you.

DELETE /client/ref/:id

Please go to Section 5.9, “Workers” to learn the
complete workflow usage.

5.9. Workers
All the API processing is based on Worker objects created by the server (on behalf of the clients
requests) to serve data or metadata packets. The workers creation endpoints are easily
recognizable by their URLs patterns:

:url data

POST

file

POST

POST /:url/data

POST /:url/file

url

URL can be any valid API resource that point
toward a data or a file endpoint.

The workers can serve streams under 3 types:

• data the de facto interface to process data into a third party application. These kind of workers
use the host shared memory mechanisms with pooled buffers to distribute large chunk of data
to multiple concurrent consumers.

• file this helps you record files onto the host hard drive. These workers supports splitting and
containerized formats like mp4, asf, or avi. Each time that a file is finished or split, the
completed field of the Worker object is set to true. The next request will point toward a new file
via a redirected URL.

Finally, the Workers transfer packets from the LT agent to the LT clients. Packets may contains data,
metadata, video, audio, …

63

5.9.1. Worker Creation

A type has to be submitted to the data or file endpoint to create a worker. The type is a string that
describes the data class audio, image and video and the data format. The type is a mandatory field
and must be set to a valid value.

Audio: audio/pcm, audio/wav, audio/aac.

Image: image/yuyv, image/yuv422, image/nv12, image/rgba, image/rgb, image/jpeg, image/png, image/bmp.

Video: video/yuyv, video/yuv422, video/nv12, video/rgba, video/rgb, video/jpeg, video/png, video/bmp,
video/h264, video/mp4.

5.9.1.1. Audio Data Worker

Create a worker object that serves audio data packets.

Parameters

media string

Media type identifier. Could be audio/pcm or
audio/aac.

source string

The audio board input source: :board/hdmi-
in/:id, :board/sdi-in/:id and canvas/:id.

channels int

The number of audio channels. Default 2.

samplerate int

The audio sample rate. Default 48000.

depth int

The audio sample depth. Default 16.

Response

Returns the location of the worker object onto
the form of a redirect error.

POST /:url/data

request

{
 "method": "POST",
 "url": "cv40:/:url/data",
 "body": {
 "media": "audio/pcm",
 "source": "0/hdmi-in/0",
 "channels": 2,
 "samplerate": 48000,
 "depth": 16
 }
}

response

{
 "location": "cv40:/client/jobs/...",
 "error": "redirect"
}

▼ Examples

▼ GO

err := lt.Post("cv40:/:url/data", lt.AudioDataWorker{Media: "audio/pcm"}, nil)
if !errors.Is(err, lt.ErrRedirect) {
 log.Fatal("worker creation failed:", err)
}

64

workerURL := lt.RedirectLocation(err)

▼ C++

lt::error err = lt::Post("cv40:/:url/data", lt::AudioDataWorker{ "audio/pcm" }, nullptr);
if (!lt::ErrorIs(err, lt::ErrRedirect)) {
 logFatal("worker creation failed:" + err);
}
string workerURL = lt::RedirectLocation(err);

▼ Python

resp, err = Post("cv40:/:url/data", {'media': "audio/pcm"})
if not lt.ErrorIs(err, lt.ErrRedirect):
 exit(err)
workerURL = lt.RedirectLocation(err)

5.9.1.2. Image Data Worker

Create a worker object that serves one image data packet.

Parameters

media string

Media type identifier. Could be image/yuyv,
image/yuv422, image/nv12, image/rgba,
image/rgb, image/jpeg, image/png and
image/bmp.

source string

The audio board input source: :board/hdmi-
in/:id, :board/sdi-in/:id and canvas/:id.

size [2]int

The image frame size. Let empty to use the
default size.

Response

Returns the location of the worker object onto
the form of a redirect error.

POST /:url/data

request

{
 "method": "POST",
 "url": "cv40:/:url/data",
 "body": {
 "media": "video/nv12",
 "source": "0/hdmi-in/0",
 "size": [1920, 1080]
 }
}

response

{
 "location": "cv40:/client/jobs/...",
 "error": "redirect"
}

▼ Examples

65

▼ GO

err := lt.Post("cv40:/:url/data", lt.ImageDataWorker{Media: "image/jpeg"}, nil)
if !errors.Is(err, lt.ErrRedirect) {
 log.Fatal("worker creation failed:", err)
}
workerURL := lt.RedirectLocation(err)

▼ C++

lt::error err = lt::Post("cv40:/:url/data", lt::ImageDataWorker{ "image/jpeg" }, nullptr);
if (!lt::ErrorIs(err, lt::ErrRedirect)) {
 logFatal("worker creation failed:" + err);
}
string workerURL = lt::RedirectLocation(err);

▼ Python

resp, err = Post("cv40:/:url/data", {'media': "image/jpeg"})
if not lt.ErrorIs(err, lt.ErrRedirect):
 exit(err)
workerURL = lt.RedirectLocation(err)

5.9.1.3. Video Data Worker

Create a worker object that continuously serves video data packets.

66

Parameters

media string

Media type identifier. Could be video/yuyv,
video/yuv422, video/nv12, video/rgba,
video/rgb, video/jpeg, video/png, video/bmp,
video/h264, video/hevc and video/mp4.

source string

The audio board input source: :board/hdmi-
in/:id, :board/sdi-in/:id and canvas/:id.

size [2]int

The image frame size. Let empty to use the
default size.

framerate float

The video frame rate. Let empty to use the
default framerate.

Response

Returns the location of the worker object onto
the form of a redirect error.

POST /:url/data

request

{
 "method": "POST",
 "url": "cv40:/:url/data",
 "body": {
 "media": "video/nv12",
 "source": "0/hdmi-in/0",
 "size": [1920, 1080],
 "framerate": 30
 }
}

response

{
 "location": "cv40:/client/jobs/...",
 "error": "redirect"
}

▼ Examples

▼ GO

err := lt.Post("cv40:/:url/data", lt.VideoDataWorker{Media: "video/nv12"}, nil)
if !errors.Is(err, lt.ErrRedirect) {
 log.Fatal("worker creation failed:", err)
}
workerURL := lt.RedirectLocation(err)

▼ C++

lt::error err = lt::Post("cv40:/:url/data", lt::VideoDataWorker{ "video/nv12" }, nullptr);
if (!lt::ErrorIs(err, lt::ErrRedirect)) {
 logFatal("worker creation failed:" + err);
}
string workerURL = lt::RedirectLocation(err);

▼ Python

resp, err = Post("cv40:/:url/data", {'media': "video/nv12"})
if not lt.ErrorIs(err, lt.ErrRedirect):
 exit(err)
workerURL = lt.RedirectLocation(err)

67

5.9.1.4. Audio File Worker

Create a worker object that records an audio file. The file is split when the file length or the file
duration is reached.

Parameters

media string

Media type identifier. Could be audio/pcm,
audio/wav or audio/aac.

source string

The audio board input source: :board/hdmi-
in/:id, :board/sdi-in/:id and canvas/:id.

channels int

The number of audio channels. Default 2.

samplerate int

The audio sample rate. Default 48000.

depth int

The audio sample depth. Default 16.

location string

The file location.

duration int

The file duration in milliseconds to record.
Default 0 (infinite).

splitSize int

The file split length in bytes. Default 0 (no
split).

splitDuration int

The file split duration in milliseconds. Default
0 (no split).

Response

Returns the location of the worker object onto
the form of a redirect error.

POST /:url/file

request

{
 "method": "POST",
 "url": "cv40:/:url/file",
 "body": {
 "media": "audio/wav",
 "source": "0/hdmi-in/0",
 "channels": 2,
 "samplerate": 48000,
 "depth": 16,
 "location": "/path/to/audio/directory",
 "duration": 0,
 "splitSize": 0,
 "splitDuration": 0
 }
}

response

{
 "location": "cv40:/client/jobs/...",
 "error": "redirect"
}

▼ Examples

▼ GO

err := lt.Post("cv40:/:url/file", lt.AudioFileWorker{Media: "audio/wav"}, nil)
if !errors.Is(err, lt.ErrRedirect) {
 log.Fatal("worker creation failed:", err)

68

}
workerURL := lt.RedirectLocation(err)

▼ C++

lt::error err = lt::Post("cv40:/:url/file", lt::AudioFileWorker{ "audio/wav" }, nullptr);
if (!lt::ErrorIs(err, lt::ErrRedirect)) {
 logFatal("worker creation failed:" + err);
}
string workerURL = lt::RedirectLocation(err);

▼ Python

resp, err = Post("cv40:/:url/file", {'media': "audio/wav"})
if not lt.ErrorIs(err, lt.ErrRedirect):
 exit(err)
workerURL = lt.RedirectLocation(err)

5.9.1.5. Image File Worker

Create a worker object that records one image file.

Parameters

media string

Media type identifier. Could be image/yuyv,
image/yuv422, image/nv12, image/rgba,
image/rgb, image/jpeg, image/png and
image/bmp.

source string

The audio board input source: :board/hdmi-
in/:id, :board/sdi-in/:id and canvas/:id.

size [2]int

The image frame size. Let empty to use the
default size.

location string

The file location.

Response

Returns the location of the worker object onto
the form of a redirect error.

POST /:url/file

request

{
 "method": "POST",
 "url": "cv40:/:url/file",
 "body": {
 "media": "video/nv12",
 "source": "0/hdmi-in/0",
 "size": [1920, 1080],
 "location": "/path/to/image/directory"
 }
}

response

{
 "location": "cv40:/client/jobs/...",
 "error": "redirect"
}

▼ Examples

▼ GO

err := lt.Post("cv40:/:url/file", lt.ImageFileWorker{Media: "image/jpeg"}, nil)
if !errors.Is(err, lt.ErrRedirect) {
 log.Fatal("worker creation failed:", err)

69

}
workerURL := lt.RedirectLocation(err)

▼ C++

lt::error err = lt::Post("cv40:/:url/file", lt::ImageFileWorker{ "image/jpeg" }, nullptr);
if (!lt::ErrorIs(err, lt::ErrRedirect)) {
 logFatal("worker creation failed:" + err);
}
string workerURL = lt::RedirectLocation(err);

▼ Python

resp, err = Post("cv40:/:url/file", {'media': "image/jpeg"})
if not lt.ErrorIs(err, lt.ErrRedirect):
 exit(err)
workerURL = lt.RedirectLocation(err)

5.9.1.6. Video File Worker

Create a worker object that records a video file. The file is split when the file length or the file
duration is reached.

70

Parameters

media string

Media type identifier. Could be video/yuyv,
video/yuv422, video/nv12, video/rgba,
video/rgb, video/jpeg, video/png, video/h264,
video/hevc and video/mp4.

source string

The audio board input source: :board/hdmi-
in/:id, :board/sdi-in/:id and canvas/:id.

size [2]int

The image frame size. Let empty to use the
default size.

framerate float

The video frame rate. Let empty to use the
default framerate.

location string

The file location.

duration int

The file duration in seconds to record.
Default 0 (infinite).

splitSize int

The file split length in bytes. Default 0 (no
split).

splitDuration int

The file split duration in seconds. Default 0
(no split).

POST /:url/file

request

{
 "method": "POST",
 "url": "cv40:/:url/file",
 "body": {
 "media": "video/mp4",
 "source": "0/hdmi-in/0",
 "size": [1920, 1080],
 "framerate": 30,
 "location": "/path/to/video/directory",
 "duration": 0,
 "splitSize": 0,
 "splitDuration": 0
 "extra": {
 "hw": "",
 "bitrate": 0,
 "quality": 0,
 "gop": 0,
 "codec": "",
 "preset": ""
 }
 }
}

response

{
 "location": "cv40:/client/jobs/...",
 "error": "redirect"
}

71

Extra string

Video encoder configuration parameters that control the encoding process:

• hw - Hardware encoder to use: "qsv" (Intel), "nvenc" (NVIDIA), or "amf" (AMD)

• bitrate - Target bitrate in bits per second (e.g., 5000000 for 5 Mbps)

• quality - Quality/compression level (19-24, lower values = higher quality)

• gop - Group of Pictures - keyframe interval in frames

• codec - Video codec to use: "h264" or "hevc"

• preset - Preset for the encoder (e.g., "veryfast", "faster", "fast", "medium", "slow",
`"slower", "veryslow")

NOTE
Use either bitrate or quality for rate control, but not both simultaneously.
Using bitrate creates a constant bitrate encoding, while quality creates
variable bitrate encoding with consistent visual quality.

Response

Returns the location of the worker object onto the form of a redirect error.

▼ Examples

▼ GO

err := lt.Post("cv40:/:url/file", lt.VideoFileWorker{Media: "video/mp4"}, nil)
if !errors.Is(err, lt.ErrRedirect) {
 log.Fatal("worker creation failed:", err)
}
workerURL := lt.RedirectLocation(err)

▼ C++

lt::error err = lt::Post("cv40:/:url/file", lt::VideoFileWorker{ "video/mp4" }, nullptr);
if (!lt::ErrorIs(err, lt::ErrRedirect)) {
 logFatal("worker creation failed:" + err);
}
string workerURL = lt::RedirectLocation(err);

▼ Python

resp, err = Post("cv40:/:url/file", {'media': "video/mp4"})
if not lt.ErrorIs(err, lt.ErrRedirect):
 exit(err)
workerURL = lt.RedirectLocation(err)

5.9.2. Worker Object

The Worker object is the result of a GET request onto a worker endpoint. It contains the worker
status, data packets and metadata. A Worker might process one or multiples tracks and the SDK
provides helpers functions to automatically parse the worker into a comprehensive structure with
the contained audio and video packets.

72

name string

Name.

location string

Location.

start int64

Unix timestamp at which the worker started.

duration int64

Elapsed time since the worker started.

size int

Quantity of byte processed since the segment
started.

status string

running, paused, break (file split) or completed.

packets map[int]packet

Packets maps packet or shared packet of
video, audio or text data samples and/or
metadata samples.

Worker object

{
 "name": "",
 "location": "",
 "start": 1644248369455566,
 "duration": 16667,
 "size": 4147200,
 "status": "completed",
 "packets": {
 "0": {
 "... packet object #0 ..."
 }
 }
}

5.9.3. Packet Object

The packet object wraps the data and the metadata of an audio, video, … track.

The SDK provides a helper function to automatically parse the packets into a comprehensive
structure.

73

track int

The track ID of the packet if the worker
process multiple tracks.

type string

The packet type and format.

signal string

none (not found), or locked (ready to use).

timestamp int64

Unix timestamp at which the packet has been
sampled.

data []byte

The packet plain data buffer.

meta JSON

The metadata fields for audio and video. See
audio and video metadata objects.

Packet object

{
 "track": 0,
 "type": "audio/pcm",
 "signal": "none",
 "timestamp": 1695816377020822,
 "data": "...",
 "meta": {
 "channels": 2,
 "samplerate": 48000,
 "depth": 16,
 "samples": 1600
 },
}

5.9.3.1. SharedPacket Object

This has the same description as the Packet object, use only for reference. To lower the cpu
consumption and the latency, big data blocks are transmitted to the user using the OS standard
shared memory mechanisms. No memory copy is involved in the packet transmission.

The SDK provides a helper function to automatically parse the shared packets into a comprehensive
structure.

74

track int

The track ID of the packet if the worker
process multiple tracks.

type string

The packet type and format.

signal string

none (not found), or locked (ready to use).

timestamp int64

Unix timestamp at which the packet has been
sampled.

meta JSON

The packet metadata fields for video, audio,
…

ref string

The shared memory reference to be deleted
once the data has been used.

client string

The client id which has made the request.

handle string

The handle that allows to access the shared
memory.

size int

The shared memory block total capacity.

ptr int

The pointer at which the shared buffer start
inside the shared memory block.

len int

The shared buffer length inside the shared
memory block.

SharedPacket object

{
 "track": 0,
 "type": "video/yuyv",
 "signal": "locked",
 "timestamp": 1695815814430318,
 "len": 16588800,
 "meta": {
 "size": [1920, 1080],
 "framerate": 30,
 "interlaced": false,
 "keyframe": true
 },
 "ref": "{lt}:/client/ref/...",
 "client": "q5jrzd2OIQuxCq1IJWICuA",
 "handle": "{lt}_global_24",
 "size": 1275592704,
 "ptr": 478347264
}

5.9.3.2. Audio Metadata

Packets with audio/* type.

75

channels int

The number of channels.

samplerate int

The number of samples per second.

depth int

The number of bits per sample.

Samples int

The number of samples contained into the
buffer.

Audio metadata

{
 "channels": 2,
 "samplerate": 48000,
 "depth": 16,
 "samples": 800,
}

5.9.3.3. Image Metadata

Packets with image/* type.

size [2]int

The image frame size.
Image metadata

{
 "size": [1920, 1080],
}

5.9.3.4. Video Metadata

Packets with video/* type.

size [2]int

The video frame size.

framerate float

The number of video frame per second.

interlaced bool

Is the frame interlaced.

keyframe bool

Is the frame intra coded.

Video metadata

{
 "size": [1920, 1080],
 "framerate": 60,
 "interlaced": false,
 "keyframe": true
}

5.9.4. Data Worker Workflow

Create a worker object that serves data packets. Data packets could be of type audio, image or

76

video.

Create Worker

> POST cv40:/canvas/0/yuyv/data

• A worker is created.

• Check non-null error.

• Retrieve worker location with 'redirect'
URL.

> GET workerURL

• JSON Worker object is returned.

• Check non-null error.

> Check EndOfStream signal

• Exit or pass to the next step.

> Process Worker

• See data worker processing below.

• Continue the worker loop until the
EndOfStream signal is met.

POST / :ur l /data

Stop ?

POST workerURL/stop

GET workerURL

yes

End signal ?
no

Process Worker

JSON Worker object

New workerURL endpoint

77

> Monitor the Worker progress

• Start, duration, total processed bytes

> Loop over the Worker Packets

• Grab one packet.

• Check the packet track ID.

• Check the packet track signal.

> Process the Packet

• Check the media type field.

• Parse and load the metadata.

• Use the data.

> Release the Packet

• Call the packet.Close() function.

• Shared memory reference is released.

• Check non-null error.

Process Data Worker

Worker
infos

Moni tor
worker.Star t

worker.Duration
worker.Length
worker.Status

Packet
track infos

Route
packet.Track
packet.Signal

Packet
payload

Process
packet.Media
packet.Data
packet.Meta

Re lease
packet.Close()

worker.Packets[n]

no

more Packets ?
yes

Increment n

Packet n

n = 0

5.9.5. File Worker Workflow

Create a worker object that records a file. The file is split when the file length or the file duration is
reached. Files could be of type audio, image or video.

78

Create file worker

> POST cv40:/canvas/0/png/file

• A worker is created.

• Check non-null error.

> GET worker

• JSON Worker object is returned.

• Check non-null error.

> Check EndOfStream signal

• Exit or pass to the next step.

> Process Worker

• See process Worker workflow above.

• Continue the worker loop

POST /:url/fi le

Stop ?

POST workerURL/stop

GET workerURL

yes

End signal ?
no

Process Worker

JSON Worker object

New workerURL endpoint

Process file worker

> GET cv40:/canvas/0/png/file

• JSON Worker object is returned.

• Check non-null error.

> Monitor the Worker progress

• Name, location

• Start, duration, total processed bytes,
completed

> Loop over the Worker Packets

• Grab one packet.

• Check the packet track ID.

• Check the packet track signal.

> Process the Packet

• Check the media type field.

• Parse and load the metadata.

> Release the Packet

• Call the packet.Close() function.

• Check non-null error.

Process File Worker

Worker
infos

Moni tor
worker.Name

worker.Location
- - -

worker.Star t
worker.Duration
worker.Length
worker.Status

Packet
track infos

Route
packet.Track
packet.Signal

Packet
payload

Moni tor
packet.Media
packet.Meta

Re lease
packet.Close()

worker.Packets[n]

no

more Packets ?
yes

Increment n

Packet n

n = 0

79

Chapter 6. Cheatsheet
/

GET

:board

GET

buttons

GET

:pin

GET

:board

GET

camera :id

GET

data

POST

file

POST

net

POST

white

GET POST

colors

GET POST

exposure

GET POST

visuals

GET POST

buttons

GET

:pin

GET

:board

GET

hdmi-out :id

GET POST

:board

GET

sdi-out :id

GET POST

canvas :id

GET DELETE

data

POST

file

POST

80

canvas :id

GET

init

POST

text

POST

line

POST

ellipse

POST

rectangle

POST

image

POST

video

POST

clear

POST

op

POST

ops

POST

client jobs :id

GET

start

POST

stop

POST

pause

POST

refs :id

DELETE

81

Chapter 7. Changelog
1.3.3 (17/09/2025):
- Fix get camera button with CV40Q
- Add get camera temperature

1.3.2 (11/09/2025):
- Remove serial/uart client from sdk
- Fix zoom problem (now boards can work properly without PCIe)
- Minor fixes

1.3.1 (31/07/2025):
- Fix serial/uart client
- Fix downscaling

1.3.0 (21/07/2025):
- Add agent configuration file
- Add NV12 native support
- Add independent RGB gain
- Add video encoder parameters (hardware accelerators, codecs, ...)
- Add dead pixels correction
- Improve overlay performance
- Improve agent reliability
- Improve programmation reliability
- Improve Linux support
- Update sdk
- Remove Windows 7 & 8 support
- Minor fixes

1.2.1 (11/02/2025):
- Improve player colorimetry
- Minor fixes

1.2.0 (22/01/2025):
- Add low light boost
- Add shadow lighting
- Add OSD feature into server
- Add overlay scaling option
- Improve DirectShow filters
- Update sdk
- Minor fixes

1.1.0 (22/08/2024):
- Add OSD feature (only works with UART interface)

1.0.0 (19/07/2024):
- First official release

82

	CV40 API: The programmer guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Installation
	2.1. Windows
	2.2. Linux
	2.3. SDK
	2.4. Tools
	2.5. cv40agent Controls
	2.6. Board Firmware

	Chapter 3. ecurl (CLI)
	3.1. GET command
	3.2. POST command
	3.3. DELETE Command
	3.4. PLAY Command
	3.5. REC Command

	Chapter 4. ecam (GUI)
	Chapter 5. API description
	5.1. Agent
	5.1.1. Agent Configuration File
	5.1.2. Agent Object
	5.1.3. View cv40agent Information

	5.2. Board
	5.2.1. Board Object
	5.2.2. View Board Information
	5.2.3. Button Object
	5.2.4. View Button State
	5.2.5. Buttons Object
	5.2.6. View Buttons State

	5.3. Audio/Video structure
	5.3.1. Audio object
	5.3.2. Video object

	5.4. Camera
	5.4.1. Camera Object
	5.4.2. View Camera Status
	5.4.3. White Object
	5.4.4. View White Settings
	5.4.5. Update White Settings
	5.4.6. Colors Object
	5.4.7. View Colors Settings
	5.4.8. Update Colors Settings
	5.4.9. Exposure Object
	5.4.10. View Exposure Settings
	5.4.11. Update Exposure Settings
	5.4.12. Visuals Object
	5.4.13. View Visuals Settings
	5.4.14. Update Visuals Settings
	5.4.15. Button Object
	5.4.16. View Button State
	5.4.17. Buttons Object
	5.4.18. View Buttons State

	5.5. HDMI Output
	5.5.1. HDMI Output Object
	5.5.2. View HDMI Output Status
	5.5.3. Configure HDMI Output

	5.6. SDI Output
	5.6.1. SDI Output Object
	5.6.2. View SDI Output Status
	5.6.3. Configure SDI Output

	5.7. Canvas
	5.7.1. Canvas Object
	5.7.2. View Canvas Status
	5.7.3. Delete Operation
	5.7.4. Init Operation
	5.7.5. Text Operation
	5.7.6. Line Operation
	5.7.7. Ellipse Operation
	5.7.8. Rectangle Operation
	5.7.9. Image Operation
	5.7.10. Video Operation
	5.7.11. Clear Operation
	5.7.12. Batch Operations

	5.8. Client
	5.8.1. Fetch Worker Updates
	5.8.2. Release Referenced Memory

	5.9. Workers
	5.9.1. Worker Creation
	5.9.2. Worker Object
	5.9.3. Packet Object
	5.9.4. Data Worker Workflow
	5.9.5. File Worker Workflow

	Chapter 6. Cheatsheet
	Chapter 7. Changelog

